Retinal Ganglion Cell Plasticity in Glaucoma

青光眼视网膜神经节细胞可塑性

基本信息

项目摘要

DESCRIPTION (provided by applicant): Retinal ganglion cell (RGC) death is the primary cause of irreversible blindness in Open Angle Glaucoma (OAG) and most optic neuropathies. The goal of this project is to prevent blindness in these diseases by obtaining the information needed to understand the etiology of RGC vulnerability, and use this understanding to develop approaches that prevent cell death. Our objective is determining RGC susceptibility to stressors such as IOP elevation, metabolic load, and neurotrophic factor (NT) deficiency in mouse models of glaucoma and optic neuropathy during the stage of progressive RGC dysfunction preceding death (critical period). Our central hypothesis is that RGC death is the result of failure of autoregulatory/adaptive processes that can no longer sustain normal RGC homeostasis, resulting in loss of RGC electrical responsiveness. During the critical period, RGC responsiveness is modifiable (plastic) upon stressors such as IOP, metabolic demand and NT support, thus providing a rationale and a target for therapeutic intervention. Using innovative methods, we will acutely modulate the levels of these stressors and simultaneously assess modifiability of RGC electrical responsiveness over time using pattern electroretinogram (PERG) and visual evoked potential (VEP). We will also use state-of-the-art optical coherence tomography (OCT) to serially monitor thickness of inner retinal layers, as well as retinal immunohistochemistry at endpoint. We will attain our goal and objective by accomplishing the following aims: 1) Test the hypothesis that RGC plasticity occurs in a specific time window in mouse models of glaucoma and optic neuropathy. Models will be the Myoc transgenic mouse of glaucoma, the ND4 transgenic mouse of multiple sclerosis, and the MOG-specific TCR transgenic mouse of optic neuritis. Controls will be corresponding non-pathological congenic mice. We will non-invasively alter either IOP with changes of body posture, or the metabolic demand with flickering light, and will measure corresponding changes of the PERG/VEP signal that precede loss of OCT signal; 2) Test the hypothesis that RGC plasticity is inducible in mouse models of chronic NT deficiency. We will perform unilateral lesions of the superior colliculus (SC) in C57BL/6J and DBA/2J mice and will quantify changes of the PERG and OCT signal in each eye. We will also induce IOP and metabolic stress in SC-lesioned mice to quantify acquired susceptibility of the PERG signal. Successful completion of our research will establish a new conceptual model of RGC susceptibility, and will improve our technical capability of detecting diseases' onset, monitoring their progression and the effect of treatment, eventually changing clinical practice. This will represent a significant advancement in the field and will be influential on future research on glaucoma and other neurodegenerative diseases involving RGC. PUBLIC HEALTH RELEVANCE: Glaucoma and optic neuropathies are leading causes of irreversible blindness, whose common cause is retinal ganglion cell (RGC) death. In this project we investigate the hypothesis that RGC dysfunction and demise is initiated by failure of autoregulatory processes that can no longer sustain normal homeostasis, resulting in progressive loss of pattern electroretinogram and susceptibility to stressors such as IOP elevation, increased metabolic demand, and neurotrophic factors deficiency. Understanding the etiology of RGC vulnerability is a necessary step to develop therapeutic approaches that reduce or eliminate its effects on cell death.
描述(由申请人提供):视网膜神经节细胞(RGC)死亡是开放角度青光眼(OAG)和大多数光学神经病的不可逆失明的主要原因。该项目的目的是通过获得了解RGC脆弱性的病因所需的信息来防止这些疾病的失明,并利用这种理解来开发防止细胞死亡的方法。我们的目标是确定RGC对压力源的敏感性,例如IOP升高,代谢负荷和神经营养因子(NT)缺乏症在渐进性RGC功能障碍阶段(关键时期)阶段(关键时期)。我们的中心假设是RGC死亡是无法再维持正常RGC稳态的自动调节/适应过程失败的结果,导致RGC电反应能力丧失。在关键时期,RGC响应能力是可修改的(塑性),例如IOP,代谢需求和NT支持,从而提供了理由和治疗干预的靶标。使用创新方法,我们将使用模式电图(PERG)和视觉诱发电位(VEP)敏锐地调节这些应力源的水平,并同时评估RGC电响应能力的可修改性。我们还将使用最先进的光学相干断层扫描(OCT)来监测视网膜内部层的厚度,以及端点的视网膜免疫组织化学。我们将通过实现以下目标来实现我们的目标和目标:1)测试RGC可塑性在青光眼和视神经病变小鼠模型中发生的假设。模型将是青光眼的MYOC转基因小鼠,多发性硬化症的ND4转基因小鼠和MOG特异性的视神经炎的TCR转基因小鼠。对照将是相应的非病理先天小鼠。我们将随着身体姿势变化的变化或闪烁的光的代谢需求而非侵入性改变IOP,并将测量PERG/VEP信号的相应变化,而PERG/VEP信号是OCT信号丢失之前的; 2)检验以下假设:RGC可塑性在慢性NT缺乏的小鼠模型中诱导。我们将在C57BL/6J和DBA/2J小鼠中执行上凸孔(SC)的单侧病变,并将量化每只眼睛中PERG和OCT信号的变化。我们还将在SC剂量小鼠中诱导IOP和代谢应激,以量化PERG信号的获得性敏感性。成功完成我们的研究将建立一个新的RGC易感性概念模型,并将提高我们检测疾病发作,监测其进展和治疗效果的技术能力,最终改变临床实践。这将代表该领域的重大进步,并将对涉及RGC的青光眼和其他神经退行性疾病的未来研究产生影响。 公共卫生相关性:青光眼和视神经神经病是不可逆失明的主要原因,其共同原因是视网膜神经节细胞(RGC)死亡。在该项目中,我们调查了一个假设,即RGC功能障碍和灭亡是由无法再维持正常稳态的自动调节过程的失败引发的,从而导致逐渐丧失了模式电子图和对压力因素的易感性,例如IOP升高,代谢需求增加以及神经营养性因素缺乏症。了解RGC脆弱性的病因是开发治疗方法的必要步骤,以减少或消除其对细胞死亡的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

VITTORIO PORCIATTI其他文献

VITTORIO PORCIATTI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('VITTORIO PORCIATTI', 18)}}的其他基金

RETINAL GANGLION CELL PLASTICITY IN GLAUCOMA
青光眼视网膜神经节细胞的可塑性
  • 批准号:
    7508411
  • 财政年份:
    2009
  • 资助金额:
    $ 33.85万
  • 项目类别:
RETINAL GANGLION CELL PLASTICITY IN GLAUCOMA
青光眼视网膜神经节细胞的可塑性
  • 批准号:
    7895585
  • 财政年份:
    2009
  • 资助金额:
    $ 33.85万
  • 项目类别:
Retinal Ganglion Cell Plasticity in Glaucoma
青光眼视网膜神经节细胞可塑性
  • 批准号:
    8893991
  • 财政年份:
    2009
  • 资助金额:
    $ 33.85万
  • 项目类别:
Retinal Ganglion Cell Plasticity in Glaucoma
青光眼视网膜神经节细胞可塑性
  • 批准号:
    8536296
  • 财政年份:
    2009
  • 资助金额:
    $ 33.85万
  • 项目类别:
LIFE AND DEATH OF RETINAL GANGLION CELLS
视网膜神经节细胞的生与死
  • 批准号:
    7057225
  • 财政年份:
    2005
  • 资助金额:
    $ 33.85万
  • 项目类别:
LIFE AND DEATH OF RETINAL GANGLION CELLS
视网膜神经节细胞的生与死
  • 批准号:
    6846493
  • 财政年份:
    2005
  • 资助金额:
    $ 33.85万
  • 项目类别:
LIFE AND DEATH OF RETINAL GANGLION CELLS
视网膜神经节细胞的生与死
  • 批准号:
    7226618
  • 财政年份:
    2005
  • 资助金额:
    $ 33.85万
  • 项目类别:
REVERSIBLE GANGLION CELL DYSFUNCTION IN GLAUCOMA
青光眼可逆性神经节细胞功能障碍
  • 批准号:
    7995181
  • 财政年份:
    2004
  • 资助金额:
    $ 33.85万
  • 项目类别:
Miami Center for Vision Research
迈阿密视觉研究中心
  • 批准号:
    7217866
  • 财政年份:
    2004
  • 资助金额:
    $ 33.85万
  • 项目类别:
Reversible Ganglion Cell Dysfunction in Glaucoma
青光眼可逆性神经节细胞功能障碍
  • 批准号:
    7111872
  • 财政年份:
    2004
  • 资助金额:
    $ 33.85万
  • 项目类别:

相似国自然基金

新型活性酯靶向赖氨酸的活细胞化学标记方法及其生物学应用
  • 批准号:
    22307084
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
元素标记单颗粒等离子体质谱数字检测新方法及其生物分析应用
  • 批准号:
    22374111
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于2bRAD-M技术探索尸体微生物基因组分子标记的时相变化规律及法医学应用
  • 批准号:
    82371896
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于深度学习的重度抑郁症亚型识别和个体化生物标记解析研究
  • 批准号:
    62301549
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
膝关节软骨退变多模态磁共振成像与软骨及滑膜相关生物标记物表达关系的实验研究
  • 批准号:
    82360339
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 33.85万
  • 项目类别:
Biomarkers for prognosis of closed-mechanism nerve injuries
闭合性神经损伤预后的生物标志物
  • 批准号:
    10742745
  • 财政年份:
    2023
  • 资助金额:
    $ 33.85万
  • 项目类别:
Innovative Non-Invasive Imaging of Traumatic Brain Injury
创伤性脑损伤的创新非侵入性成像
  • 批准号:
    10527640
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
Development and identification of magnetic resonance, electrophysiological, and fiber-optic imaging biomarkers of myofascial pain
肌筋膜疼痛的磁共振、电生理学和光纤成像生物标志物的开发和鉴定
  • 批准号:
    10580406
  • 财政年份:
    2022
  • 资助金额:
    $ 33.85万
  • 项目类别:
Biomarkers of Early Experimental Glaucoma - Resubmission - 1
早期实验性青光眼的生物标志物 - 重新提交 - 1
  • 批准号:
    10613439
  • 财政年份:
    2020
  • 资助金额:
    $ 33.85万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了