Molecular and optogenetic tools for studying voltage in the brain

用于研究大脑电压的分子和光遗传学工具

基本信息

  • 批准号:
    8281248
  • 负责人:
  • 金额:
    $ 9.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-02-01 至 2014-01-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Fluorescence imaging has become the fastest growing technique for monitoring neuronal activity in defined networks of neurons. We have recently developed a molecular wire-based fluorescent sensor for optically measuring voltage changes in mammalian neurons. This novel method makes use of a fluorophore connected to a quencher via a long molecular wire that spans a large fraction of the transmembrane voltage. At resting potentials, electron transfer from the quencher through the wire to the excited state of the fluorophore quenches the latter. Depolarization inhibits electron transfer and brightens fluorescence, just as Ca2+ binding dequenches indicators like fluo-3. These new molecular wire voltage sensitive dyes (VSDs) provide large and fast increases in fluorescence upon depolarization and can optically detect and resolve evoked and spontaneous action potentials in single trials in primary culture neurons. During the mentored phase, the proposed research seeks to expand upon these initial findings by characterizing molecular wire VSDs in a more complex context: mammalian brain slices. Previously synthesized genetically targeted versions of the molecular wire VSDs will enable the interrogation of defined sub-populations of neurons. As a test-case, specific neuronal populations in the lateral habenula, a region associated with depressive behavior, will be genetically targeted and examined with molecular wire VSDs . Another method for improving sensitivity via selective neuronal labeling is through the use of genetically encoded sensors. In the mentored phase, the intramolecular photoinduced electron transfer (PeT) rates of fluorescent protein fusions will be examined and the voltage sensitivity of this process quantified to determine the optimal configuration for voltage sensitivity in vitro. During the independent phase, this knowledge will be exploited to generate genetically encoded voltage sensitive fluorescent proteins based on a PeT mechanism. As with the small molecule counterparts, a PeT- based approach to voltage sensing should provide large, fast fluorescent changes with negligible capacitative load. Membrane localization will be investigated via a number of strategies and the sensitivity of the probes in live cells measured. Finally, in the independent phase, a rational design and synthesis of improved molecular wire VSDs will be carried out. Systematic variation of the donor, acceptor, and molecular wire and analysis of the resulting quantum yields, voltage sensitivities and solubilities of the probes will reveal design principles enabling future generations of VSDs to provide greater sensitivity and precision in the detection of minute voltage changes in heterogeneous brain samples. Together, the components of the research strategy provide a multidisciplinary platform, spanning slice physiology, fluorescent protein design and engineering, and chemical synthesis, from which to begin to interrogate the circuitry of defined neurons within brain slices. The ability to make sensitive and precise measurements within sub-populations of neurons within heterogeneous systems will dramatically increase our understanding of the inner workings of the brain. PUBLIC HEALTH RELEVANCE: Imaging voltage changes in neurons offers an attractive method for the direct interrogation of neuronal communication. This research will apply newly synthesized molecular wire voltage sensors to studying electrical activity in brain slices, establish a new paradigm for constructing genetically encoded voltage sensitive fluorescent proteins, and improve the sensitivity and uptake of existing molecular wire voltage sensors. Successful application of these sensors will improve our understanding of the way nerve cells communicate with one another.
描述(由申请人提供):荧光成像已成为监测确定神经元网络中神经元活动的增长最快的技术。我们最近开发了一种分子电线荧光传感器,用于光学测量哺乳动物神经元的电压变化。这种新颖的方法利用了连接到淬灭剂的荧光团,该荧光团通过一条跨越大部分跨膜电压的长分子线。在静止电位时,电子从淬灭剂通过电线转移到荧光团淬灭的激发状态。去极化会抑制电子转移并亮荧光,就像Ca2+结合去Quenches指标(如Fluo-3)一样。这些新的分子线电压敏感染料(VSD)在去极化后提供荧光大大增加,并且可以在原发性培养神经元的单个试验中光学检测并解决引起的和自发的动作电位。在指导阶段,拟议的研究试图通过在更复杂的情况下表征分子VIRE VSD来扩展这些初步发现:哺乳动物的脑切片。先前合成的分子线VSD的遗传靶向版本将使神经元定义的亚种群审问。作为测试案例,将在遗传靶向并用分子线VSD进行遗传靶向和检查侧面habenula中的特定神经元群体。通过选择性神经元标记提高灵敏度的另一种方法是使用遗传编码的传感器。在指导阶段,将检查分子内光诱导的电子转移(PET)荧光蛋白融合的速率,并将被检查 该过程量化以确定体外电压灵敏度的最佳配置。在独立阶段,将利用该知识来基于PET机制生成遗传编码的电压敏感荧光蛋白。与小分子对应物一样,基于PET的电压传感方法应以可忽略不计的电容载荷提供较大的快速荧光变化。将通过多种策略和测量的活细胞中探针的灵敏度研究膜定位。最后,在独立阶段,将进行改进的分子VSD的合理设计和合成。供体,受体和分子线的系统变化以及所得的量子产率,探针的电压灵敏度和溶解度的分析将揭示设计原理,从而使后代VSD能够在发现异构脑样品的微小电压变化时提供更大的灵敏度和精度。总之,研究策略的组成部分提供了一个多学科平台,涵盖了切片生理学,荧光蛋白设计和工程以及化学合成,从中开始询问脑切片内定义的神经元的电路。在异质系统中神经元子种群中进行敏感和精确测量的能力将极大地增加我们对大脑内部工作的理解。 公共卫生相关性:神经元的成像电压变化为直接询问神经元通信提供了有吸引力的方法。这项研究将应用新合成的分子电压传感器来研究脑切片中的电活动,建立一个新的范式,用于构建遗传编码的电压敏感荧光蛋白,并提高现有分子电压传感器的敏感性和吸收。这些传感器的成功应用将提高我们对神经细胞相互通信方式的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Evan Walker Miller其他文献

Evan Walker Miller的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Evan Walker Miller', 18)}}的其他基金

Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
  • 批准号:
    10367845
  • 财政年份:
    2017
  • 资助金额:
    $ 9.06万
  • 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
  • 批准号:
    10534178
  • 财政年份:
    2017
  • 资助金额:
    $ 9.06万
  • 项目类别:
Interrogating Neuronal Membrane Potential Dynamics with Optical Voltage Sensors
用光学电压传感器询问神经元膜电位动态
  • 批准号:
    10084321
  • 财政年份:
    2017
  • 资助金额:
    $ 9.06万
  • 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
  • 批准号:
    9143007
  • 财政年份:
    2016
  • 资助金额:
    $ 9.06万
  • 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
  • 批准号:
    9981758
  • 财政年份:
    2016
  • 资助金额:
    $ 9.06万
  • 项目类别:
New Chemical Tools for Exploring Cellular Physiology
探索细胞生理学的新化学工具
  • 批准号:
    9753268
  • 财政年份:
    2016
  • 资助金额:
    $ 9.06万
  • 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
  • 批准号:
    8728414
  • 财政年份:
    2013
  • 资助金额:
    $ 9.06万
  • 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
  • 批准号:
    8735200
  • 财政年份:
    2013
  • 资助金额:
    $ 9.06万
  • 项目类别:
Molecular and optogenetic tools for studying voltage in the brain
用于研究大脑电压的分子和光遗传学工具
  • 批准号:
    8416343
  • 财政年份:
    2012
  • 资助金额:
    $ 9.06万
  • 项目类别:
A Genetically-Targeted Molecular Wire Fluorescent Sensor for Monitoring Voltage
用于监测电压的基因靶向分子线荧光传感器
  • 批准号:
    8117708
  • 财政年份:
    2010
  • 资助金额:
    $ 9.06万
  • 项目类别:

相似国自然基金

基于计算生物学技术小分子农兽药残留物驼源单域抗体虚拟筛选与亲和力成熟 -以内蒙古阿拉善双峰驼为例
  • 批准号:
    32360190
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
框架核酸多价人工抗体增强靶细胞亲和力用于耐药性肿瘤治疗
  • 批准号:
    32301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
中国年轻女性接种不同剂次国产双价HPV16/18疫苗的特异性抗体亲和力及细胞免疫反应研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中国年轻女性接种不同剂次国产双价HPV16/18疫苗的特异性抗体亲和力及细胞免疫反应研究
  • 批准号:
    82273723
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于酵母展示与自体持续突变的纳米抗体快速亲和力成熟技术研究
  • 批准号:
    82204046
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Structural Basis of Nociceptor Channel TRPM3 gating and pharmacology
伤害感受器通道 TRPM3 门控和药理学的结构基础
  • 批准号:
    10735377
  • 财政年份:
    2023
  • 资助金额:
    $ 9.06万
  • 项目类别:
Rescue of Autoimmune-Associated Long QT Syndrome by Decoy Peptides
诱饵肽拯救自身免疫相关的长 QT 综合征
  • 批准号:
    10687180
  • 财政年份:
    2022
  • 资助金额:
    $ 9.06万
  • 项目类别:
Regulation of the Neuronal Transcriptome and Translatome by Myelination
髓鞘形成对神经​​元转录组和翻译组的调节
  • 批准号:
    10707902
  • 财政年份:
    2022
  • 资助金额:
    $ 9.06万
  • 项目类别:
Spatial and molecular determinants of fusion probability and timing
融合概率和时间的空间和分子决定因素
  • 批准号:
    9977278
  • 财政年份:
    2018
  • 资助金额:
    $ 9.06万
  • 项目类别:
Spatial and molecular determinants of fusion probability and timing
融合概率和时间的空间和分子决定因素
  • 批准号:
    10443756
  • 财政年份:
    2018
  • 资助金额:
    $ 9.06万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了