From mtDNA stress to cellular immunity: Triggers, Mechanisms and Effectors
从线粒体DNA应激到细胞免疫:触发因素、机制和效应器
基本信息
- 批准号:10650823
- 负责人:
- 金额:$ 39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:Aerobic BacteriaAntitumor ResponseAutoimmune DiseasesAutoimmunityBacteriaBiologyCalcium SignalingCell AgingCell DeathCell NucleusCell physiologyCellular ImmunityCellular StressCollaborationsCytosolDangerousnessDecision MakingDiseaseEukaryotic CellEvolutionGenerationsGenetic MaterialsGenetic TranscriptionGenomeGoalsHealthHomo sapiensHumanImmunityIn VitroInflammatoryKnowledgeMediatingMitochondriaMitochondrial DNAMitochondrial RNANatural ImmunityNucleic AcidsOrganellesOxidative PhosphorylationPathway interactionsPermeabilityProcessProductionProteinsRNAResearchResearch PersonnelRoleSignal TransductionSourceStressTechnologyTranslatingTranslationsVirusWorkcancer therapyexperiencegenetic approachhuman diseasein vivoinsightknowledge translationmemberneuroinflammationnovel therapeutic interventionprogramssensorstressor
项目摘要
PROJECT SUMMARY: Mitochondria are the evolutionary product of the endosymbiosis between the ancestral
eukaryotic cell and an obligate aerobe bacterium, which brought new functionalities to eukaryotic cells. During
their evolution, mitochondria transferred more than 99% of their known genetic material to the nucleus – with the
exception of a small, multi-copy genome referred to as mtDNA. In Homo sapiens, the 16.6 Kbp of mtDNA is
circular and encodes for 13 members of the oxidative phosphorylation chain (OXPHOS) and other structural
RNAs. Beyond their canonical role in the generation of ATP through OXPHOS, the mitochondria are also critical
stakeholders in several cellular processes from metabolite fluxes and calcium signaling to cell death and aging.
Recently, mitochondrial stress has been implicated in the aberrant activation of innate immunity, mediated by
the release of organellar components, such as mitochondrial nucleic acids, recognized by cytosolic sensors as
foreign and potentially dangerous. Aberrant immunity has deep implications in human health and is a driver of
human diseases, such as neuroinflammation and autoimmunity. Mitochondrial immunity has been studied both
in vitro and in vivo, but the complete repertoire of its triggers and effectors has yet to be characterized. I recently
uncovered a previously unknown source of stress conducive to aberrant immunity: stress to the mtDNA in the
form of double-stranded breaks (mtDSBs). The presence of this stressor is relayed to the cytosolic compartment
via mitochondrial herniation, a recently described form of Bax/Bak mediated organelle permeabilization, that
exposes mitochondrial contents to the cytosol. After mtDSBs, mitochondrial RNA – rather than the recipient of
the stress, mtDNA – initiated the innate immunity cascade by activating the sensor RIG-I. Our proposed research
plan builds on this past work to ask essential questions: (1) which sources of mtDNA stress are conducive to
aberrant immunity and what is the impact of dysfunctional mitochondrial transcription or translation; (2) how is
mitochondrial herniation regulated and how does it differ from other forms of mitochondrial permeabilization; and
(3) what are the distinctive features of mitochondrial RNA activation of RIG-I and where do they originate?
Our goal is to understand how mitochondria integrate and translate stress signals, particularly in the
context of innate immunity. My lab will probe different sources of mtDNA stress and interrogate the mechanisms,
effectors, and mitochondrial moieties engaging the cytosolic sensors of immunity. RIG-I is a key protein for the
defense against viruses, but its aberrant activation is involved in both autoimmune conditions and the beneficial
anti-tumor responses elicited by cancer treatments. By building upon our recent findings and prior experience,
as well as by establishing collaborations and seeking the assistance of senior investigators with advanced
expertise in both mitochondrial biology and the key technologies proposed, our research program aims to have
long-lasting impacts on the foundational and translational knowledge of cellular stress responses going beyond
mitochondrial biology into a pathway with further implications in human health and disease: innate immunity.
项目摘要:线粒体是祖先内共生的进化产物
真核细胞和强大的可氧化物细菌,为真核细胞带来了新的功能。期间
它们的进化,线粒体将其已知遗传物质的99%以上转移到了核中 -
一个小的多拷贝基因组除外,称为mtDNA。在智人中,mtDNA的16.6 kbp是
氧化磷酸化链(OXPHOS)和其他结构的13个成员的圆形和编码
RNA。除了其在ATP通过OXPHOS生成中的典型作用之外,线粒体也很关键
利益相关者在几个细胞过程中,从代谢物通量和钙信号传导到细胞死亡和衰老。
最近,线粒体应力在异常的先天免疫激活中暗示,由
有机成分的释放,例如线粒体核酸,被胞质传感器识别为
外国和潜在危险。异常免疫对人类健康具有深远的影响,是
人类疾病,例如神经炎症和自身免疫性。线粒体免疫组织都已经研究了
体外和体内,但其触发因素和效果的完整曲目尚未表征。我最近
发现了先前未知的应力来源,导致对异常免疫力:对mtDNA的压力
双链断裂的形式(MTDSB)。该压力源的存在被传递到胞质室
通过线粒体疝,最近描述的Bax/Bak介导细胞器透化的形式,该形式
暴露于细胞质的线粒体含量。 MTDSB后,线粒体RNA - 而不是接受者
压力mtDNA - 通过激活传感器rig-i引发了先天免疫级联。我们提出的研究
计划以过去的工作为基础提出基本问题:(1)进行哪些MTDNA压力来进行
异常免疫力以及功能失调的线粒体转录或翻译的影响; (2)如何
线粒体疝受调节,与其他形式的线粒体通透性不同;和
(3)RIG-I的线粒体RNA激活的独特特征是什么?它们起源于哪里?
我们的目标是了解线粒体如何整合和翻译压力信号,尤其是在
先天免疫的背景。我的实验室将探测不同的mtDNA应力来源,并询问机制,
效应子和线粒体部分与免疫的胞质传感器相关。 rig-i是关键蛋白
防御病毒的防御,但其异常激活涉及自身免疫性条件和有益的
癌症治疗引起的抗肿瘤反应。通过基于我们最近的发现和先前的经验,
以及建立合作并寻求高级调查员的协助
线粒体生物学和提出的关键技术方面的专业知识,我们的研究计划旨在拥有
对细胞压力反应的基础和翻译知识的长期影响超出
线粒体生物学进入一条对人类健康和疾病的进一步影响的途径:先天免疫学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marco Tigano其他文献
Marco Tigano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marco Tigano', 18)}}的其他基金
From mtDNA stress to cellular immunity: Triggers, Mechanisms and Effectors
从线粒体DNA应激到细胞免疫:触发因素、机制和效应器
- 批准号:
10501418 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
From mtDNA stress to cellular immunity: Triggers, Mechanisms and Effectors
从线粒体DNA应激到细胞免疫:触发因素、机制和效应器
- 批准号:
10797812 - 财政年份:2022
- 资助金额:
$ 39万 - 项目类别:
相似国自然基金
P3H1通过ATF4/System Xc-轴抑制肾癌铁死亡和抗肿瘤免疫反应的作用及机制研究
- 批准号:82372704
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
SLAM家族受体负调cDC1细胞活化和抗肿瘤免疫反应的机制研究
- 批准号:32330034
- 批准年份:2023
- 资助金额:221 万元
- 项目类别:重点项目
稀土金属催化吡啶邻位烷基区域选择性碳氢键硼化反应及其在抗肿瘤药物中的应用研究
- 批准号:22301222
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
泛素化酶KLHL6调控T细胞耗竭及抗肿瘤免疫反应的机制研究
- 批准号:32300764
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
SLC5A12通过组蛋白乳酸化调控膀胱癌三级淋巴结构削弱抗肿瘤免疫反应
- 批准号:82373337
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Personalized, antigen-directed immunotherapy delivered to lymph nodes
递送至淋巴结的个性化抗原导向免疫疗法
- 批准号:
10744599 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Novel hematopoietic humanized mouse model to study CAR-T therapy-associated cytokine release syndrome
研究CAR-T疗法相关细胞因子释放综合征的新型造血人源化小鼠模型
- 批准号:
10648862 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Activating Native Tumor Immunity with IL-33 Armored CARs
使用 IL-33 装甲 CAR 激活天然肿瘤免疫
- 批准号:
10744438 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Metallo-fluorocarbon nanoemulsion for PET detection of cancer inflammation
金属氟碳纳米乳用于PET检测癌症炎症
- 批准号:
10737153 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别:
Understanding how the interaction between Lag3 deficiency and hypercholesterolemia impact anti-tumor immunity and cardiovascular disease in a melanoma model
了解 Lag3 缺乏与高胆固醇血症之间的相互作用如何影响黑色素瘤模型中的抗肿瘤免疫和心血管疾病
- 批准号:
10637369 - 财政年份:2023
- 资助金额:
$ 39万 - 项目类别: