New approaches for better protein voltage sensors
更好的蛋白质电压传感器的新方法
基本信息
- 批准号:9358357
- 负责人:
- 金额:$ 69.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-30 至 2019-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAddressAmino Acid SequenceAnatomyAxonBrainBrain regionButterfliesC-terminalCardiacCellsCharacteristicsCommunitiesDendritesDependenceDependencyDevelopmentDimerizationEmbryoEnergy TransferEpilepsyFluorescenceFluorescent ProbesGoalsImageIndividualLateralLightLocationMeasurementMembraneMembrane PotentialsMembrane ProteinsModificationMolecular BiologyMonitorMovementMutateMutationNerveNeuronsNoiseNoseOlfactory Receptor CellsOpticsPhosphoric Monoester HydrolasesPhysiologicalPopulationPositioning AttributePresynaptic TerminalsProcessProteinsReaction TimeReporterReportingScreening ResultSideSignal TransductionSpecificitySpeedSynapsesTestingTransfectionVirionZebrafishanalogbasebrain cellcell typedesigndimerimaging potentialimprovedin vivomillisecondneuronal cell bodyneuronal circuitrynovelnovel strategiesolfactory bulb glomerulioptical spectrapresynapticresponsesensortau Proteinstoolvoltagevoltage sensitive dye
项目摘要
This proposal aims to develop better tools for analyzing brain cells and circuits and for
large-scale recordings of brain activity. The currently available tools are relatively primitive in terms of sensitivity
and speed. One major function of a neuron is to process electrical signals. Thus a tool that is of particular
significance is high speed membrane potential imaging. Genetically encoded fluorescent protein voltage
indicators (GEVI's) are a obvious strategic approach for “visualizing the brain in action”. Genetically encoded
sensors are especially interesting to neuroscientists because, as proteins, they can be expressed in individual
cell types in the mammalian brain. Because each brain region has up to 100 different cell types, sensor
expression in a specific cell type is essential for imaging the activity of that cell type.
Recently, there has been a dramatic improvement in the signal size of GEVIs (i.e. ArcLight, 40%/100
mv) but ArcLight has a relatively slow response time constant (τ=10 msec). There are now several faster GEVIs
(τ=0.3 to 2.0 msec) but they have smaller signal sizes (~10%/100mv). One goal of this proposal is developing a
GEVI with both large and fast responses to membrane potential changes.
Several probe characteristics other than size and speed are also critically important. One is the
wavelength range of excitation and emission. At present many sensors and activators are based on GFP and its
analogues. Thus, probes with red excitation and emission spectra would allow simultaneous dual function
measurements. One aim is to develop useful red GEVIs. Second, many GEVIs have a sigmoidal
fluorescence-voltage relationship. The position of this relationship along the voltage axis can be adjusted via
mutations in the voltage sensitive domain of the GEVI. Thus GEVIs can be selective reporters of different ranges
of the neuron membrane potential and thereby selective for action potential activity versus subthreshold activity.
This selectivity depends on both the voltage at half-maximal activation as well as the steepness of the sigmoidal
curve. Lastly, it will be important to target the GEVIs to specific regions of the neuron including cell body,
dendritic post-synaptic zones, and presynaptic terminals.
All of the probes in the proposal are based on the voltage sensitive domain of a membrane protein (a
phosphatase from Ciona or zebrafish) with one or two fluorescent proteins inserted into the N- or C-terminal
region. The development of improved GEVIs will involve molecular biology for generating novel probes (bigger,
faster, red, targeted anatomically and physiologically) followed by testing in cultured HEK293 cells, acutely
dissociated neurons, and zebrafish embryos. Probes that function well in these initial screens will then be
incorporated into virus particles for in vivo transfection and measurements in the mammalian brain. Improved
and selective GEVIs would be useful to the community carrying out optical measurements of brain activity.
该提案旨在开发更好的工具来分析脑细胞和电路以及
大脑活动的大规模记录。目前可用的工具在灵敏度方面还比较原始
和速度。神经元的一项主要功能是处理电信号。因此,一个特殊的工具
意义在于高速膜电位成像。基因编码的荧光蛋白电压
指标(GEVI)是“可视化大脑活动”的明显战略方法。基因编码
神经科学家对传感器特别感兴趣,因为作为蛋白质,它们可以在个体中表达
哺乳动物大脑中的细胞类型。由于每个大脑区域有多达 100 种不同的细胞类型,传感器
特定细胞类型中的表达对于对该细胞类型的活性进行成像至关重要。
最近,GEVI 的信号大小有了显着改善(即 ArcLight,40%/100
mv),但 ArcLight 的响应时间常数相对较慢(τ=10 毫秒)。现在有几个更快的 GEVI
(τ=0.3 至 2.0 毫秒),但它们的信号大小较小(~10%/100mv)。该提案的一个目标是开发一个
GEVI 对膜电位变化具有大而快速的响应。
除了尺寸和速度之外,几个探头特性也至关重要。其一是
激发和发射的波长范围。目前许多传感器和激活器都是基于GFP及其
类似物。因此,具有红色激发和发射光谱的探针将允许同时具有双重功能
测量。目标之一是开发有用的红色 GEVI。其次,许多 GEVI 具有 s 形曲线
荧光-电压关系。这种关系沿电压轴的位置可以通过调整
GEVI 电压敏感域的突变。因此 GEVI 可以是不同范围的选择性报告基因
神经元膜电位的变化,从而对动作电位活动与阈下活动进行选择性。
这种选择性取决于半最大激活时的电压以及 S 形曲线的陡度
曲线。最后,将 GEVI 靶向神经元的特定区域(包括细胞体)非常重要。
树突突触后区和突触前末梢。
该提案中的所有探针均基于膜蛋白(a
来自 Ciona 或斑马鱼的磷酸酶),N 端或 C 端插入一或两个荧光蛋白
地区。改进的 GEVI 的开发将涉及分子生物学以产生新型探针(更大、
更快,红色,解剖学和生理学上有针对性),然后在培养的 HEK293 细胞中进行测试,急性
分离的神经元和斑马鱼胚胎。在这些初始屏幕中运行良好的探针将被
掺入病毒颗粒中,用于哺乳动物大脑中的体内转染和测量。改进
选择性 GEVI 将有助于社区对大脑活动进行光学测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
LAWRENCE B COHEN其他文献
LAWRENCE B COHEN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('LAWRENCE B COHEN', 18)}}的其他基金
New approaches for better protein voltage sensors
更好的蛋白质电压传感器的新方法
- 批准号:
9231604 - 财政年份:2016
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
8337047 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
7492061 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
7912355 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
7926907 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
7317193 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
7683164 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
Scan of Protein Space for Optical Voltage Probes
光学电压探针的蛋白质空间扫描
- 批准号:
8133686 - 财政年份:2007
- 资助金额:
$ 69.29万 - 项目类别:
OPTICAL RECORDING OF SYNAPTIC POTENTIAL INTEGRATION
突触电位整合的光学记录
- 批准号:
3414957 - 财政年份:1990
- 资助金额:
$ 69.29万 - 项目类别:
OPTICAL RECORDING OF SYNAPTIC POTENTIAL INTEGRATION
突触电位整合的光学记录
- 批准号:
3414956 - 财政年份:1990
- 资助金额:
$ 69.29万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 69.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 69.29万 - 项目类别:
Standard Grant