BRAIN CONNECTS: Multi-beam transmission electron microscopy of iteratively milled semi-thick tissue sections
大脑连接:迭代研磨半厚组织切片的多束透射电子显微镜
基本信息
- 批准号:10669305
- 负责人:
- 金额:$ 167.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAddressAlgorithmsBackBiologicalBiological ProcessBrainCollectionDevelopmentDiamondElectromagnetic FieldsElectron MicroscopeElectron MicroscopyElectronsFailureFilmHourHumanImageIonsMagnetismManualsMicrotomyMorphologic artifactsMusNeuronsOrganPyramidal CellsResearch PersonnelResolutionSamplingScanningScanning Electron MicroscopySeriesSiliconSolidSurfaceSynapsesSystemTechniquesThickThinnessTissue SampleTissuesTransmission Electron MicroscopyVisualizationYinautomated segmentationimprovedmicroscopic imagingmillimeternanometer resolutionneuronal circuitryreconstructionsegmentation algorithmtransmission process
项目摘要
Project Summary/Abstract
Volume electron microscopy is the only technique to-date that provides both sufficient resolution (<20 nm) and sufficient
field of view (>100 μm) for the dense reconstruction of neuronal wiring diagrams. Currently, there exist two systems that
have already delivered mm3-sized synaptic resolution electron microscopy stacks: Multi-beam scanning electron
microscopy(Eberle et al. 2015; Ren and Kruit 2016) (mSEM) and Gridtape-based automated transmission electron
microscopy(Yin et al. 2020; Maniates-Selvin et al. 2020) (Gridtape-TEM). In mSEM, the sample is scanned with up to 91
parallel beams and an image is formed by low energy secondary electrons that are generated during scanning.
Gridtape-TEM detects transmitted electrons with one or multiple fast cameras simultaneously. Both techniques currently
rely on collecting and imaging thousands of ultrathin serial sections (30 - 40 nm) that are being cut with a diamond knife
on an ultramicrotome. For mSEM, the sections are either collected using an automated tape collecting ultramicrotome or
directly onto silicon wafers. For Gridtape-TEM, the sections are collected onto an electron-transparent film in
millimeter-sized apertures on Gridtape. However, serial collection of ultrathin sections is delicate and inherently prone to
failures and artifacts such as section loss, folds and cracks or knife marks. More than 50% of the errors of today’s
state-of-the-art automated neuron segmentation algorithms can be attributed to missing information due to
serial-sectioning. As a consequence, more than 40 hours of manual segmentation proofreading by human experts are
currently required to accurately reconstruct a single cortical pyramidal cell. Some of the remaining automated
segmentation issues can certainly be addressed by improving the underlying algorithms. But in order to scale dense
automated neuronal circuit reconstructions to whole mouse brains with about 70 million neurons, it is necessary to
significantly reduce the experimental artifacts. The collection of semi-thin sections with a thickness around 100 - 500 nm
has been proposed as a much more robust alternative to ultrathin sectioning. In order to maintain or even increase the
resolution in Z, these semi-thin sections could be iteratively milled and scanned in the case of mSEM or a series of images
at different tilt angles could be acquired in the case of Gridtape-TEM. Here we propose to combine the commercially
available multi-beam scanning transmission electron microscope FASTEM from Delmic with iterative broad ion beam
milling of semi-thin sections (BIB-mSTEM). First, hundreds of semi-thin sections will be collected directly onto
scintillator plates using the commercially available MagC magnetic collection system. Subsequently, these sections will be
iteratively thinned and imaged by going back and forth between broad ion beam milling and imaging with FASTEM. For
each section, this will produce a series of iteratively milled TEM projection images that can be used to reconstruct a
high-resolution 3d stack of each section. BIB-mSTEM will be substantially more robust and reliable than mSEM and
Gridtape-TEM based workflows: In contrast to Gridtape-TEM, the sections are collected onto a solid substrate and not on
a fragile support film. In contrast to mSEM, BIB-mSTEM forms the image from high energy transmitted electrons that are
much less sensitive to local electromagnetic fields and milling-induced irregular surface topography than low energy
secondary electrons.
项目摘要/摘要
体积电子显微镜是唯一提供足够分辨率(<20 nm)和足够分辨率的技术
视场(>100μm),用于神经元接线图的密集重建。目前,存在两个系统
已经传递了MM3大小的突触分辨率电子显微镜堆栈:多光束扫描电子
显微镜(Eberle等人,2015; Ren and Kruit 2016)(MSEM)和基于Gridtape的自动变速器电子电子
显微镜(Yin等,2020; Maniates-Selvin等,2020)(Gridtape-Tem)。在MSEM中,将样品扫描,最多为91
平行梁和图像是由扫描过程中产生的低能二级电子产品形成的。
Gridtape-Tem简单地检测到一个或多个快速相机的传输电子。目前这两种技术
依靠收集和成像成千上万的超薄串行部分(30-40 nm),它们被用钻石刀切割
在超大型机构上。对于MSEM,该部分要么使用自动胶带收集超级机动体或
直接进入硅波。对于栅格-TEM,将部分收集到电子透明膜上
毫米大小的孔。但是,超薄部分的串行收集是微妙的,固有的容易
故障和人工制品,例如截面损失,折叠和裂缝或刀具。当今错误的50%以上
最先进的自动神经元细分算法可以归因于由于缺失的信息
串行剖面。结果,人类专家的40多个小时的手动细分校对是
目前需要准确重建单个皮质锥体细胞。剩下的一些自动化
细分问题当然可以通过改进基础算法来解决。但是为了扩展密集
自动化的神经元电路重建约7,000万个神经元,有必要
显着减少实验伪影。厚度约为100-500 nm的半薄部分的集合
已被认为是超薄截面的更强大的替代品。为了维护甚至增加
在z中的分辨率,这些半薄的部分可以在MSEM或一系列图像的情况下进行迭代铣削和扫描
在Gridtape-Tem的情况下,可以以不同的倾斜角度获取。在这里,我们建议将商业结合起来
可用的多光束扫描传输电子显微镜FASTEM来自Delmic,带有迭代宽离子束
半薄部分的铣削。首先,将直接收集数百个半薄的部分
使用市售的MAGC磁收集系统的闪烁板板。随后,这些部分将是
迭代地稀释和成像,通过在宽离子束铣削和使用FastEM成像之间来回成像。为了
每个部分,这都会产生一系列迭代铣削的TEM投影图像,可用于重建A
每个部分的高分辨率3D堆栈。 Bib-Mstem将比MSEM更健壮和可靠,并且
基于网状tem-Tem的工作流:与Gridtape-TEM相比,将部分收集到实心基板上,而不是在固体基板上
脆弱的支持电影。与MSEM相反,围嘴形成来自高能传输电子的图像
对局部电磁场和铣削引起的不规则表面地形的敏感性要小得多
二级电子产品。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Schaefer其他文献
Andreas Schaefer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 167.88万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 167.88万 - 项目类别:
High-resolution cerebral microvascular imaging for characterizing vascular dysfunction in Alzheimer's disease mouse model
高分辨率脑微血管成像用于表征阿尔茨海默病小鼠模型的血管功能障碍
- 批准号:
10848559 - 财政年份:2023
- 资助金额:
$ 167.88万 - 项目类别:
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 167.88万 - 项目类别:
GPU-based SPECT Reconstruction Using Reverse Monte Carlo Simulations
使用反向蒙特卡罗模拟进行基于 GPU 的 SPECT 重建
- 批准号:
10740079 - 财政年份:2023
- 资助金额:
$ 167.88万 - 项目类别: