Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
基本信息
- 批准号:10585553
- 负责人:
- 金额:$ 58.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-16 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAbdomenActive LearningAddressAlgorithmsAnatomyArchivesArtificial IntelligenceAttentionAutomated AnnotationCase StudyChestClassificationClinicalClinical Decision Support SystemsComplexComputer AssistedComputer-Assisted DiagnosisConsumptionDataData SetDatabasesDetectionDevelopmentDiagnosticDiseaseExpert SystemsFaceFoundationsFutureGoalsHealth systemHeterogeneityImageInstitutionLabelLungManualsMedical ImagingModelingNatural Language ProcessingNoduleOrganOutcomePatientsPelvisPerformanceRadiology SpecialtyReportingResearch PersonnelResolutionScanningShapesSiteStructureSupervisionSystemTestingTherapeutic EquivalencyTimeTrainingTriageVariantX-Ray Computed Tomographyartificial intelligence algorithmbody systemchest computed tomographycone-beam computed tomographycostdeep learningdeep learning modelfederated learningimaging modalityimprovedinnovationlarge datasetslearning strategyradiologisttool
项目摘要
PROJECT SUMMARY / ABSTRACT
Computed tomography (CT) imaging for the body can result in thousands of images spanning many organs
and myriad possible diseases. With growing patient load as well as increasing resolution and complexity of
scans, the task of CT interpretation has become daunting. To improve radiologist performance, many artificial
intelligence (AI) algorithms have been produced, but most are limited by their very narrow application to a
specific disease in a specific organ or have been trained on limited data due to the high cost and complexity of
manual annotation. As a result, there is an unmet need because existing AI solutions have not significantly
improved the workflow or performance of radiologists.
To meet these needs, we propose to develop a computer-aided diagnosis triage tool for CT of the chest,
abdomen, and pelvis (CAP) that would focus radiologists’ attention on regions with a high likelihood of
actionable disease while minimizing search efforts in regions of low likelihood.
Our hypothesis is that a triage tool will improve radiologist workflow while simultaneously maintaining or
improving performance. Our long-term goal is to create a clinical decision support system that will address
bottlenecks of radiologist workflow and performance. As key steps toward demonstrating feasibility for that
goal, we propose the following three specific aims:
1. Create framework for the assembly, deidentification, annotation, and sharing of over a million chest,
abdomen, pelvis (CAP) CT cases from two major health systems.
2. Develop a triage system trained using multi-site CT datasets through collaborative/federated learning.
3. Pilot use of the triage system at multiple sites to allow radiologists to perform efficiently and equivalently for
clinical tasks of assessing actionable disease in CAP CT.
Key innovations will include the use of weak supervision to label a massive number of cases from two health
systems. Labeling will be based on rule-based expert systems as well as natural language processing. Image
classification will be based on deep learning models capable of processing an entire 3D CT volume and trained
with federated learning to leverage the rich heterogeneity of data from the two health systems.
The expected outcome of this project will be evidence to support a new clinical workflow for radiologist
interpretation, which is the foundation for all medical imaging. For this project, we will maximize impact by
addressing CAP CT because of the large patient load and complex anatomy/disease, and by producing one of
the largest medical imaging datasets that can be shared for future research including grand challenges. In
addition, by leveraging existing data in patient archives and radiology reports, our approach has the potential to
be applicable to other body sites or imaging modalities in the future.
项目总结/摘要
计算机断层扫描(CT)成像的身体可以导致成千上万的图像跨越许多器官
和无数可能的疾病随着患者负荷的增加以及分辨率和复杂性的增加,
随着CT扫描的普及,CT解释的任务变得令人生畏。为了提高放射科医生的表现,许多人工
人工智能(AI)算法已经产生,但大多数都受到其非常狭窄的应用程序的限制,
或者由于高成本和复杂性,已经在有限的数据上进行了培训。
手动注释。因此,存在未满足的需求,因为现有的人工智能解决方案还没有显著地
改善了放射科医生的工作流程或工作表现。
为了满足这些需求,我们建议开发一个计算机辅助诊断分诊工具,用于胸部CT,
腹部和骨盆(CAP),这将使放射科医生的注意力集中在高可能性的区域,
同时最大限度地减少在低可能性区域的搜索工作。
我们的假设是,分诊工具将改善放射科医生的工作流程,同时保持或
提高性能。我们的长期目标是创建一个临床决策支持系统,
放射科医师工作流程和性能的瓶颈。作为证明其可行性的关键步骤,
为了实现这一目标,我们提出以下三个具体目标:
1.创建框架,用于组装,去识别,注释和共享超过一百万个胸部,
腹部、骨盆(CAP)CT病例来自两个主要卫生系统。
2.通过协作/联合学习开发使用多地点CT数据集进行训练的分诊系统。
3.在多个站点试用分诊系统,使放射科医生能够有效和等效地执行以下操作:
评估CAP CT中可操作疾病的临床任务。
关键的创新将包括利用薄弱的监督来标记来自两个卫生机构的大量病例。
系统.标签将基于基于规则的专家系统以及自然语言处理。图像
分类将基于能够处理整个3D CT体积的深度学习模型,
通过联邦学习来利用两个卫生系统丰富的数据异质性。
该项目的预期结果将成为支持放射科医生新临床工作流程的证据
这是所有医学成像的基础。对于这个项目,我们将通过以下方式最大限度地发挥影响力:
由于患者负荷大和解剖结构/疾病复杂,
最大的医学成像数据集,可以共享用于未来的研究,包括重大挑战。在
此外,通过利用患者档案和放射学报告中的现有数据,我们的方法有可能
在未来可应用于其他身体部位或成像模式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH Y LO其他文献
JOSEPH Y LO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH Y LO', 18)}}的其他基金
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7096059 - 财政年份:2006
- 资助金额:
$ 58.68万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7390660 - 财政年份:2006
- 资助金额:
$ 58.68万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7591041 - 财政年份:2006
- 资助金额:
$ 58.68万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7248669 - 财政年份:2006
- 资助金额:
$ 58.68万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6417326 - 财政年份:2002
- 资助金额:
$ 58.68万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6620433 - 财政年份:2002
- 资助金额:
$ 58.68万 - 项目类别:
Improved diagnosis of breast microcalcification clusters
改进乳腺微钙化簇的诊断
- 批准号:
6515215 - 财政年份:2001
- 资助金额:
$ 58.68万 - 项目类别:
相似海外基金
Contributions of cell behaviours to dorsal closure in Drosophila abdomen
细胞行为对果蝇腹部背侧闭合的贡献
- 批准号:
2745747 - 财政年份:2022
- 资助金额:
$ 58.68万 - 项目类别:
Studentship
Using the GI Tract as a Window to the Autonomic Nervous System in the Thorax and in the Abdomen
使用胃肠道作为胸部和腹部自主神经系统的窗口
- 批准号:
10008166 - 财政年份:2018
- 资助金额:
$ 58.68万 - 项目类别:
Development of a free-breathing dynamic contrast-enhanced (DCE)-MRI technique for the abdomen using a machine learning approach
使用机器学习方法开发腹部自由呼吸动态对比增强 (DCE)-MRI 技术
- 批准号:
18K18364 - 财政年份:2018
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combined motion-compensated and super-resolution image reconstruction to improve magnetic resonance imaging of the upper abdomen
结合运动补偿和超分辨率图像重建来改善上腹部的磁共振成像
- 批准号:
1922800 - 财政年份:2017
- 资助金额:
$ 58.68万 - 项目类别:
Studentship
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P013309/1 - 财政年份:2017
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
Optimising patient specific treatment plans for ultrasound ablative therapies in the abdomen (OptimUS)
优化腹部超声消融治疗的患者特定治疗计划 (OptimUS)
- 批准号:
EP/P012434/1 - 财政年份:2017
- 资助金额:
$ 58.68万 - 项目类别:
Research Grant
Relationship between touching the fetus via the abdomen of pregnant women and fetal attachment based on changes in oxytocin levels
基于催产素水平变化的孕妇腹部触摸胎儿与胎儿附着的关系
- 批准号:
16K12096 - 财政年份:2016
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design Research of Healthcare System based on the Suppleness of Upper Abdomen
基于上腹部柔软度的保健系统设计研究
- 批准号:
16K00715 - 财政年份:2016
- 资助金额:
$ 58.68万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2015
- 资助金额:
$ 58.68万 - 项目类别:
Postdoctoral Fellowships
Technical Development of Diffusion Tensor Magnetic Resonance Imaging in the Human Abdomen
人体腹部弥散张量磁共振成像技术进展
- 批准号:
453832-2014 - 财政年份:2014
- 资助金额:
$ 58.68万 - 项目类别:
Postdoctoral Fellowships