Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads

应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热

基本信息

  • 批准号:
    10611468
  • 负责人:
  • 金额:
    $ 7.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Project Summary There is a steady growth in the use of conductive medical implants in the US and globally. Currently, more than 12 million Americans carry a form of orthopedic, cardiac, or neuromodulation device, and the number grows by 100,000 annually. It is estimated that 50-75% of patients with implants would benefit from magnetic resonance imaging (MRI) during their lifetime, some with repeated examinations. Unfortunately, the interaction between MRI's radiofrequency (RF) fields and conductive implants have led to fatal injuries due to RF heating of implants, making MRI inaccessible to most patients. In response, extensive effort has been dedicated to quantifying and mitigating the problem of MR-induced RF heating. Following regulatory recommendations, these efforts heavily rely on full-wave electromagnetic (EM) simulations that model details of MRI RF coils, human body, and implant, and as such are notoriously cumbersome. Even taking advantage of today's high- power computing clusters it typically takes tens of hours to complete a single simulation. Our long-term goal is to enable application of in-silico medicine for RF heating assessment of implants in real time and on a patient- by-patient basis. Our main hypothesis is to test whether advanced deep learning (DL) methods can rapidly and accurately predict RF heating of elongated implants (such as leads), when only the background electric field of the MRI RF coil and the implant's trajectory are in hand. The background RF field is the field that exists in the body in the absence of the implanted device and can be easily calculated in advance for any known MRI coil. Similarly, the implant's trajectory can be extracted from routine medical images in only a few minutes. Herein, we propose to develop, optimize, and experimentally validate a deep learning approach that predicts RF heating of DBS systems during MRI with body coils at both 1.5 T and 3 T with <2℃ error. We will build training datasets from 500 patient-derived DBS lead models, apply EM simulations to calculate ground truth RF heating using vendor-provided models of MRI RF coils, and develop deep learning algorithms to predict the RF heating with 2℃ accuracy with knowledge of only the implant's trajectory (CT-based) and the coil's features (vendor- specific). If successful, our work will introduce a paradigm shift in the practice of MRI RF heating assessment, reducing simulation times from tens of hours to a few minutes. This will democratize a practice that is currently afforded by only a handful of well-resourced companies and opens the door to a plethora of novel implant designs and patient-specific safety guidelines. Importantly, the knowledge gained in this innovative work can be translated to patients with other types of implants, especially those with cardiac implantable electronic devices and spinal cord stimulators.
项目摘要 在美国和全球,使用导电医学侵入的使用稳定增长。目前,更多 超过1200万美国人携带一种骨科,心脏或神经调节装置的形式,数量 每年增长100,000。据估计,有50-75%的玻璃患者将受益于磁性 共振成像(MRI)一生,有些重复检查。不幸的是,互动 在MRI的射频(RF)磁场和导电性降低之间导致了由于RF加热而导致致命伤害 大多数患者的MRI无法访问。作为回应,大量的努力已致力于 量化和减轻MR诱导的RF加热问题。按照监管建议, 这些努力在很大程度上依赖全波电磁(EM)模拟,这些模拟模拟了MRI RF线圈的细节, 人体和植入物,因此众所周知。甚至利用当今的高级 电源计算集群通常需要数十个小时才能完成单个模拟。我们的长期目标是 能够实时应用硅胶医学来实时和患者的螺想症评估 - 副患者。我们的主要假设是测试先进深度学习(DL)方法是否可以迅速而 准确预测伸长的刷子的RF加热(例如铅),仅当背景电场的电场 MRI RF线圈和植入物的轨迹在手中。背景RF字段是存在于 在没有植入装置的情况下,可以在任何已知的MRI线圈中预先计算。 同样,只需几分钟即可从常规的医疗图像中提取植入物的轨迹。在此处, 我们建议开发,优化和实验验证一种预测RF的深度学习方法 MRI期间的DBS系统在1.5 t和3 t的MRI过程中加热,误差<2 t和3 t。我们将建立培训 来自500个患者衍生的DBS铅模型的数据集,应用EM模拟来计算地面真相RF加热 使用MRI RF线圈的供应商提供的模型,并开发深度学习算法以预测RF加热 具有2℃精度,仅了解植入物的轨迹(基于CT)和线圈的特征(供应商 - 具体的)。如果成功,我们的工作将引入MRI RF供暖评估实践的范式转变, 将模拟时间从数十小时减少到几分钟。这将民主化目前的做法 仅由少数资源丰富的公司提供,并为大量新型植入物打开了大门 设计和特定于患者的安全指南。重要的是,这项创新工作中获得的知识可以 将其转化为具有其他类型的直接的患者,尤其是那些具有心脏植入电子的患者 设备和脊髓刺激剂。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Application of Machine learning to predict RF heating of cardiac leads during magnetic resonance imaging at 1.5 T and 3 T: A simulation study.
应用机器学习预测 1.5 T 和 3 T 磁共振成像期间心脏引线的射频加热:一项模拟研究。
Rapid prediction of MRI-induced RF heating of active implantable medical devices using machine learning.
使用机器学习快速预测 MRI 引起的有源植入式医疗设备的射频加热。
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ulas Bagci其他文献

Ulas Bagci的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ulas Bagci', 18)}}的其他基金

Hybrid Intelligence for Trustable Diagnosis And Patient Management of Prostate Cancer (HIT-PIRADS)
用于前列腺癌可信诊断和患者管理的混合智能 (HIT-PIRADS)
  • 批准号:
    10611212
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
  • 批准号:
    10431261
  • 财政年份:
    2022
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10391173
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10640048
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Radiologist-Centered Artificial Intelligence (RCAI) for Lung Cancer Screening and Diagnosis
以放射科医生为中心的人工智能(RCAI)用于肺癌筛查和诊断
  • 批准号:
    10339620
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10397701
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:
Cyst-X: Interpretable Deep Learning Based Risk Stratification of Pancreatic Cystic Tumors
Cyst-X:基于可解释深度学习的胰腺囊性肿瘤风险分层
  • 批准号:
    10689657
  • 财政年份:
    2020
  • 资助金额:
    $ 7.07万
  • 项目类别:

相似国自然基金

分布式非凸非光滑优化问题的凸松弛及高低阶加速算法研究
  • 批准号:
    12371308
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
资源受限下集成学习算法设计与硬件实现研究
  • 批准号:
    62372198
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于物理信息神经网络的电磁场快速算法研究
  • 批准号:
    52377005
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
考虑桩-土-水耦合效应的饱和砂土变形与流动问题的SPH模型与高效算法研究
  • 批准号:
    12302257
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向高维不平衡数据的分类集成算法研究
  • 批准号:
    62306119
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
  • 批准号:
    10698965
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
  • 批准号:
    10610975
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Diagnostic aptamer reagents to develop multi-analyte blood test for pre-clinical, mild and moderate Alzheimer's disease
诊断适体试剂用于开发针对临床前、轻度和中度阿尔茨海默病的多分析物血液检测
  • 批准号:
    10597840
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
Building predictive algorithms to identify resilience and resistance to Alzheimer's disease
构建预测算法来识别对阿尔茨海默病的恢复力和抵抗力
  • 批准号:
    10659007
  • 财政年份:
    2023
  • 资助金额:
    $ 7.07万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了