Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
基本信息
- 批准号:402741-2012
- 负责人:
- 金额:$ 1.24万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In financial markets, an asset such as a stock, a bond or a commodity is said to be illiquid when large quantities cannot always be traded at any desired time (buyers and sellers are not always available), when the added cost of trading large quantities, or liquidity premium, is non-negligible, or when the impact of a large transaction on prices persists over time. Liquidity becomes a risk factor when its level evolves randomly in time. In recent years, the availability of limit order book data has made liquidity risk the focal point of many trading desks around the world. From a mathematical modelling point of view, only the last two dimensions of illiquidity have been considered in details in the academic literature. Furthermore, these two notions have usually beentreated very differently and few connections have been made between them. Many times in the literature, it has been found that a realistic model can lead to realistic solutions only if it properly integrates all dimensions of liquidity. The broad objective of this research program is to develop a useful mathematical model of the three dimensions of liquidity based on quantities that can be observed or estimated in practice and investigate the relations and the impact of each dimension by considering various pricing and optimal portfolio problems.
在金融市场中,当大量交易不能总是在任何期望的时间进行交易时(买家和卖家并不总是可用的),当大量交易的额外成本或流动性溢价不可忽略时,或者当一笔大额交易对价格的影响随着时间的推移持续存在时,股票、债券或大宗商品等资产被称为非流动性资产。当流动性水平在时间上随机演变时,流动性就成为一个风险因素。近年来,限价指令账簿数据的可获得性使流动性风险成为全球许多交易部门关注的焦点。从数学模型的角度来看,只有流动性不足的最后两个维度在学术文献中得到了详细的考虑。此外,这两个概念通常受到截然不同的对待,它们之间几乎没有什么联系。在文献中多次发现,一个现实的模型只有在适当地整合流动性的所有维度时才能产生现实的解决方案。这一研究计划的广泛目标是根据在实践中可以观察或估计的数量,建立一个关于流动性的三个维度的有用的数学模型,并通过考虑各种定价和最优投资组合问题来调查每个维度的关系和影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roch, Alexandre其他文献
Roch, Alexandre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roch, Alexandre', 18)}}的其他基金
Mathematical models of liquidity risk and applications to finance
流动性风险的数学模型及其在金融中的应用
- 批准号:
RGPIN-2021-03299 - 财政年份:2022
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical models of liquidity risk and applications to finance
流动性风险的数学模型及其在金融中的应用
- 批准号:
RGPIN-2021-03299 - 财政年份:2021
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
- 批准号:
402741-2012 - 财政年份:2018
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
- 批准号:
402741-2012 - 财政年份:2015
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
- 批准号:
402741-2012 - 财政年份:2014
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
- 批准号:
402741-2012 - 财政年份:2013
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Mathematical Modelling of Liquidity Risk in Financial Markets
金融市场流动性风险的数学模型
- 批准号:
402741-2012 - 财政年份:2012
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Grants Program - Individual
Processus de Lévy en finance mathématique
金融数学的征收过程
- 批准号:
303369-2004 - 财政年份:2004
- 资助金额:
$ 1.24万 - 项目类别:
Postgraduate Scholarships - Master's
相似国自然基金
Improving modelling of compact binary evolution.
- 批准号:10903001
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
M2DESCO - Computational Multimode Modelling Enabled Design of Safe & Sustainable Multi-Component High-Entropy Coatings
M2DESCO - 计算多模式建模支持安全设计
- 批准号:
10096988 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
EU-Funded
SMILE - Semantic Modelling of Intent through Large-language Evaluations
SMILE - 通过大语言评估进行意图语义建模
- 批准号:
10097766 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative R&D
Advanced Modelling Platform with Moving Ventricular Walls for Increasing Speed to Market of Heart Pumps
具有移动心室壁的先进建模平台可加快心脏泵的上市速度
- 批准号:
10071797 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative R&D
Domino - Computational Fluid Dynamics Modelling of Ink Droplet Breakup for Mitigating Mist Formation during inkjet printing
Domino - 墨滴破碎的计算流体动力学模型,用于减轻喷墨打印过程中的雾气形成
- 批准号:
10090067 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Collaborative R&D
Macroeconomic and Financial Modelling in an Era of Extremes
极端时代的宏观经济和金融模型
- 批准号:
DP240101009 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Projects
Population genomic methods for modelling bacterial pathogen evolution
用于模拟细菌病原体进化的群体基因组方法
- 批准号:
DE240100316 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Discovery Early Career Researcher Award
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship
Modelling the impact of geomagnetically induced currents on UK railways
模拟地磁感应电流对英国铁路的影响
- 批准号:
NE/Y001176/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Research Grant
Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
- 批准号:
EP/X029093/1 - 财政年份:2024
- 资助金额:
$ 1.24万 - 项目类别:
Fellowship