Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
基本信息
- 批准号:RGPIN-2019-07054
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Systems containing differential and algebraic equations, or DAEs, arise in many engineering applications. The index of a DAE measures how difficult is to solve it numerically: index-3 and above is considered hard. Over the last fifteen years, N. Nedialkov has been working on structural analysis and numerical integration of DAEs of an arbitrary index. Recently, he has been applying algorithmic differentiation (AD) and his high-index DAE solver DAETS (DAE by Taylor series) to solve directly mechanical systems from a Lagrangian formulation.*** The long-term objectives of this research program are (a) to build the theory and implementation of a 3D simulation tool based on Lagrangian mechanics, where the equations of motion (EM) are not derived explicitly, on modeling in cartesian coordinates, on automatic differentiation (AD), and on DAETS, and (b) to produce a monograph describing this work, where mechanics is presented based on the Lagrangian function, constraints on motion, external forces, etc., and without the complex and cumbersome derivations of EM that are ubiquitous in mechanics texts. *** The objectives of this proposal are to lay the foundation for (a) and (b) by enhancing the efficiency and capabilities of DAETS through developing methods for block-wise integration of systems of DAEs, defect control of DAE solution, and event location and hybrid DAEs, and by developing 3D mechanism and Lagrangian facilities. *** Solving arbitrary index DAEs directly, without index reduction, has been a difficult, if not impossible task. This work will lead to a complete, efficient high-index solver (equipped with reliable defect control and event location) that can be used by academia and industry.*** When modeling and simulating mechanical systems, much effort is needed to produce a constraint-free Lagrangian formulation as a system of ordinary differential equations, while a cartesian, constraint formulation is usually simpler and easier to derive. The latter, however, have been much harder to simulate, which is no longer the case with DAETS. Deriving the EM, typically done by a symbolic algebra tool, is not needed: they are evaluated at runtime, and purely through AD. Even for simple problems, the output of the symbolically differentiated Lagrangian can become large in size, leading to inefficient evaluation of the derivatives, while their evaluation through AD avoids such a growth in size.*** The proposed research will lead to advances in numerical methods and software for reliable and efficient integration of arbitrary index DAEs and in solving Lagrangian mechanics directly. Anticipated applications are in the areas of computer graphics, robotics, biomechanics, and mechanics simulations in general. The major anticipated impact is on how mechanics is taught, modeled, and simulated: from a
包含微分和代数方程(DAE)的系统出现在许多工程应用中。DAE的索引衡量用数字求解它的难度:索引-3及以上被认为是困难的。在过去的15年里,N。Nedialkov一直致力于任意指数DAE的结构分析和数值积分。最近,他一直在应用算法微分(AD)和他的高指数DAE求解器DAETS(泰勒级数DAE)从拉格朗日公式直接求解机械系统。 该研究计划的长期目标是:(a)建立基于拉格朗日力学的3D仿真工具的理论和实现,其中运动方程(EM)未显式导出,在笛卡尔坐标中建模,自动微分(AD)和DAETS,以及(B)制作描述这项工作的专著,其中力学基于拉格朗日函数,对运动、外力等的约束,而不需要在力学教材中普遍存在的EM的复杂和繁琐的推导。* 本提案的目标是通过开发DAE系统的逐块集成、DAE解决方案的缺陷控制、事件定位和混合DAE的方法,以及通过开发3D机制和拉格朗日设施,提高DAETS的效率和能力,为(a)和(B)奠定基础。* 在不减少索引的情况下直接求解任意索引DAE是一项困难的任务,甚至是不可能完成的任务。这项工作将导致一个完整的,高效的高指数求解器(配备可靠的缺陷控制和事件定位),可供学术界和工业界使用。 在对机械系统进行建模和仿真时,需要花费大量的精力将无约束的拉格朗日公式生成为常微分方程组,而有约束的拉格朗日公式通常更简单,更容易推导。然而,后者更难模拟,DAETS不再是这种情况。不需要推导EM(通常由符号代数工具完成):它们在运行时进行评估,并且纯粹通过AD进行。即使对于简单的问题,符号微分拉格朗日量的输出也会变得很大,导致导数的计算效率低下,而通过AD进行的计算避免了这种规模的增长。 拟议的研究将导致进步的数值方法和软件的可靠和有效的集成任意指数DAE和直接求解拉格朗日力学。预期的应用领域是计算机图形学,机器人,生物力学和力学模拟一般。主要的预期影响是如何力学是教,建模和模拟:从一个
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nedialkov, Nedialko其他文献
Nedialkov, Nedialko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nedialkov, Nedialko', 18)}}的其他基金
Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
- 批准号:
RGPIN-2019-07054 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
- 批准号:
RGPIN-2019-07054 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for high-index DAEs with applications to multibody dynamics
高指数 DAE 的数值方法及其在多体动力学中的应用
- 批准号:
RGPIN-2019-07054 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2016
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical methods for simulating biofilm models
模拟生物膜模型的数值方法
- 批准号:
485842-2015 - 财政年份:2015
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Numerical Methods for High-Index Differential-Algebraic Equations: Sparse, Stiff, and Hybrid Systems
高指数微分代数方程的数值方法:稀疏、刚性和混合系统
- 批准号:
RGPIN-2014-06582 - 财政年份:2014
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Numerical algorithms and software for high-index differential-algebraic equations
高指数微分代数方程的数值算法和软件
- 批准号:
227816-2009 - 财政年份:2013
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
复杂图像处理中的自由非连续问题及其水平集方法研究
- 批准号:60872130
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:面上项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:
10824044 - 财政年份:2024
- 资助金额:
$ 2.48万 - 项目类别:
Sedentary behavior, physical activity, and 24-hour behavior in pregnancy and offspring health: the Pregnancy 24/7 Offspring Study
久坐行为、体力活动和 24 小时行为对怀孕和后代健康的影响:怀孕 24/7 后代研究
- 批准号:
10654333 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Genome Editing Therapy for Usher Syndrome Type 3
针对 3 型亚瑟综合症的基因组编辑疗法
- 批准号:
10759804 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Multi-level intervention to promote healthy beverage choices among Navajo families
多层次干预促进纳瓦霍家庭选择健康饮料
- 批准号:
10776269 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Neqkiuryaraq - The Art of Preparing Food
Neqkiuryaraq - 准备食物的艺术
- 批准号:
10781483 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Increasing initiation of evidence-based weight loss treatment
越来越多地开始开展循证减肥治疗
- 批准号:
10735201 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
- 批准号:
10585123 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Disease-homing light delivery by engineering bioluminescent immune cells for whole body precision photomedicine
通过工程生物发光免疫细胞进行疾病引导光传输,用于全身精准光医学
- 批准号:
10578425 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Assessing the real-world impact of a low nicotine product standard for smoked tobacco in New Zealand
评估新西兰低尼古丁产品标准对吸食烟草的现实影响
- 批准号:
10665851 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Tumor-Targeted Multimodality Nanoscale Coordination Polymers for Chemo-Immunotherapy of Metastatic Colorectal Cancer
用于转移性结直肠癌化疗免疫治疗的肿瘤靶向多模态纳米配位聚合物
- 批准号:
10639649 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别: