Improving Data Organization in Managed Runtimes for Improved Performance
改进托管运行时中的数据组织以提高性能
基本信息
- 批准号:RGPIN-2019-04415
- 负责人:
- 金额:$ 2.48万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many software applications today are specified in interpreted languages. Interpretation allows applications to more easily execute and migrate on various platforms through the use of managed runtime technologies. This abstraction from the physical host as led to automation of resource acquisition and management such as processor scaling and memory management (garbage collection). As heap sizes increase, so does the cost incurred by garbage collection (GC) in managed runtimes. While scaling of dynamic memory in the host continues, so too does the demand by applications for more memory to satisfy the ever-increasing data to be processed. This discovery grant application is focused on the organization of data stored in dynamic memory within managed runtimes to achieve two goals. First, to segregate data objects/structures into different classes reflecting their access frequency to permit better mapping to different memory levels within the managed runtime. Second, to organize data within the dynamic memory so as to reduce pause times for garbage collection. Java programmers expect the Java Virtual Machine (JVM) to deal with all aspects of resource management, including the object heap, in a transparent way; the definition of the language, which has a create construct but no corresponding delete for objects, is emblematic of this. However, this illusion of infinite free space is destroyed on large GC pauses. Because of this, different approaches to GC need to be explored in order to achieve low, consistent pause times while keeping applications running smoothly and with high performance. To achieve this, I propose to explore new escape analysis techniques, and to investigate a segregated heap system for locally v. globally allocated objects. Cache and Translation Lookaside Buffer (TLB) misses cause large performance issues in most large Java applications. One way to mitigate these issues is by improving object locality. Improving object locality has proven to reduce cache and TLB misses in Java applications using the openJ9 JVM via Hierarchical Copying GC in the generational collector. When an object reference is followed from a parent object to a child the memory for the child object will need to be loaded into cache memory. If these objects were located within the same cache line or on the same memory page we could possibly save the cache and TLB misses. There several interesting areas of research that could improve object locality.
今天,许多软件应用程序都是用解释语言指定的。通过使用托管运行时技术,解释允许应用程序更容易地在各种平台上执行和迁移。这种对物理主机的抽象导致了资源获取和管理的自动化,例如处理器扩展和内存管理(垃圾收集)。随着堆大小的增加,托管运行时中的垃圾收集(GC)所产生的成本也会增加。虽然主机中动态内存的扩展仍在继续,但应用程序对更多内存的需求也在继续,以满足不断增加的待处理数据。这个发现授权应用程序关注于在托管运行时中组织存储在动态内存中的数据,以实现两个目标。首先,将数据对象/结构隔离到反映其访问频率的不同类中,以允许更好地映射到托管运行时内的不同内存级别。第二,在动态内存中组织数据,以减少垃圾收集的暂停时间。Java程序员期望Java虚拟机(JVM)以透明的方式处理资源管理的所有方面,包括对象堆;语言的定义,它有一个创建结构,但没有相应的对象删除,是这一点的象征。然而,这种无限自由空间的幻想在大的GC暂停时被破坏了。因此,需要探索不同的GC方法,以实现低的、一致的暂停时间,同时保持应用程序平稳运行和高性能。为了实现这一点,我建议探索新的逃逸分析技术,并调查一个隔离堆系统的本地v全局分配对象。缓存和转换后备缓冲区(TLB)未命中在大多数大型Java应用程序中会导致严重的性能问题。缓解这些问题的一种方法是改进对象局部性。在使用openJ 9 JVM的Java应用程序中,通过分代收集器中的Hierarchical CNOGC,改进对象局部性已被证明可以减少缓存和TLB未命中。当对象引用从父对象到子对象时,子对象的内存将需要加载到高速缓存内存中。如果这些对象位于相同的高速缓存行或相同的内存页上,我们可能会节省该高速缓存和TLB未命中。有几个有趣的研究领域可以提高对象的局部性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kent, Kenneth其他文献
Kent, Kenneth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kent, Kenneth', 18)}}的其他基金
Load Stall Minimization
负载失速最小化
- 批准号:
536287-2018 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Improving Data Organization in Managed Runtimes for Improved Performance
改进托管运行时中的数据组织以提高性能
- 批准号:
RGPIN-2019-04415 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Load Stall Minimization
负载失速最小化
- 批准号:
536287-2018 - 财政年份:2020
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Optimizating and integrating node.js on distributed and multicore clouds
在分布式多核云上优化和集成 Node.js
- 批准号:
501197-2016 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Load Stall Minimization
负载失速最小化
- 批准号:
536287-2018 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Improving Data Organization in Managed Runtimes for Improved Performance
改进托管运行时中的数据组织以提高性能
- 批准号:
RGPIN-2019-04415 - 财政年份:2019
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Computer Aided Design Tools for FPGA Exploration
用于 FPGA 探索的计算机辅助设计工具
- 批准号:
262177-2012 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
Optimizating and integrating node.js on distributed and multicore clouds
在分布式多核云上优化和集成 Node.js
- 批准号:
501197-2016 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Collaborative Research and Development Grants
Performance Optimization and Scaling for Simulations of Urban Planning**
城市规划模拟的性能优化和扩展**
- 批准号:
534091-2018 - 财政年份:2018
- 资助金额:
$ 2.48万 - 项目类别:
Engage Grants Program
Computer Aided Design Tools for FPGA Exploration
用于 FPGA 探索的计算机辅助设计工具
- 批准号:
262177-2012 - 财政年份:2017
- 资助金额:
$ 2.48万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
基于Linked Open Data的Web服务语义互操作关键技术
- 批准号:61373035
- 批准年份:2013
- 资助金额:77.0 万元
- 项目类别:面上项目
Molecular Interaction Reconstruction of Rheumatoid Arthritis Therapies Using Clinical Data
- 批准号:31070748
- 批准年份:2010
- 资助金额:34.0 万元
- 项目类别:面上项目
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
染色体复制负调控因子datA在细胞周期中的作用
- 批准号:31060015
- 批准年份:2010
- 资助金额:25.0 万元
- 项目类别:地区科学基金项目
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
III: Small: Rethinking the Data Organization and Lifecycle in LSM Storage Systems
III:小:重新思考 LSM 存储系统中的数据组织和生命周期
- 批准号:
2227669 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
CAREER: The Exocompiler: Decoupling Algorithms from the Organization of Computation and Data
职业:Exocompiler:将算法与计算和数据的组织解耦
- 批准号:
2328543 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Continuing Grant
RADx-Rad Discoveries & Data: Consortium Coordination Center Program Organization
RADx-Rad 发现
- 批准号:
10745886 - 财政年份:2023
- 资助金额:
$ 2.48万 - 项目类别:
Data organization and scenario testing of individual behaviour during the Covid-19 pandemic
Covid-19 大流行期间个人行为的数据组织和场景测试
- 批准号:
571884-2022 - 财政年份:2022
- 资助金额:
$ 2.48万 - 项目类别:
University Undergraduate Student Research Awards
CRCNS: Integrating gray and white matter data to understand the organization of human visual cortex
CRCNS:整合灰质和白质数据以了解人类视觉皮层的组织
- 批准号:
10396141 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Cyber-Physical Systems Virtual Organization: CPS Community and the Data Revolution
信息物理系统虚拟组织:CPS 社区和数据革命
- 批准号:
2132301 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant
Cellular Senescence Network (SenNet) Consortium Organization and Data Coordinating Center (CODCC)
细胞衰老网络(SenNet)联盟组织和数据协调中心(CODCC)
- 批准号:
10705319 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Discovering the molecular genetic principles of cell type organization through neurobiology-guided computational analysis of single cell multi-omics data sets
通过神经生物学引导的单细胞多组学数据集计算分析发现细胞类型组织的分子遗传学原理
- 批准号:
10189902 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Cellular Senescence Network (SenNet) Consortium Organization and Data Coordinating Center (CODCC)
细胞衰老网络(SenNet)联盟组织和数据协调中心(CODCC)
- 批准号:
10376501 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Cyber-Physical Systems Virtual Organization: CPS Community and the Data Revolution
信息物理系统虚拟组织:CPS 社区和数据革命
- 批准号:
2151500 - 财政年份:2021
- 资助金额:
$ 2.48万 - 项目类别:
Standard Grant