基于EEP法的非线性有限元和有限元线法自适应求解
项目介绍
AI项目解读
基本信息
- 批准号:51078199
- 项目类别:面上项目
- 资助金额:36.0万
- 负责人:
- 依托单位:
- 学科分类:E0804.结构工程
- 结题年份:2013
- 批准年份:2010
- 项目状态:已结题
- 起止时间:2011-01-01 至2013-12-31
- 项目参与者:叶康生; 邢沁妍; 杜炎; 方楠; 徐俊杰; 罗劼;
- 关键词:
项目摘要
申请者提出的有限元后处理EEP(单元能量投影)超收敛计算技术在线性问题的有限元和有限元线法中已获得广泛成功,基于该法的自适应求解也得到顺利发展,使得向非线性问题的挑战成为可能。本研究立意将其创造性地推广到一维有限元和二维有限元线法的非线性问题的自适应求解:基本思路是通过对非线性问题线性化将现有算法直接引入非线性求解,而无需单独建立非线性问题的超收敛计算公式和自适应算法;主要任务是探讨统一求解模式,创立新型算法理论,研发高效代码程序,开拓有效实际应用;预定目标是一维问题要系统成熟,二维问题有重点突破。本研究所建立的方法可望具有思想新颖、理论先进、算法高效、可靠实用等特色,是一种颇具优势和竞争力的非线性问题自适应求解方法。
结项摘要
有限元后处理超收敛计算的EEP(单元能量投影)法以及基于该法的自适应计算方法在线性问题的有限元(FEM)和有限元线法(FEMOL)中已获得了广泛的成功。在其基础上本项目研究并成功提出了一套统一通用、具有一般性的基于EEP法的非线性自适应求解方法。其基本思想是将非线性问题转化为线性问题,直接引入现有的线性问题自适应求解方法,而无需单独建立非线性问题的超收敛计算公式和自适应算法;核心策略是有限元解——超收敛解——网格细分“三步走”。该法高效、稳定、通用、可靠,已成功应用于各类常微分方程(ODE)及方程组的一维非线性FEM自适应求解以及二维非线性FEMOL的自适应求解,并已成功推广至一维、二维特征值问题的自适应分析,颇具优势和竞争力。以此为基础的二维非线性FEM自适应求解研究业已展开。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(6)
专利数量(0)
结构几何非线性分析中分叉失稳的直接求解
- DOI:--
- 发表时间:2011
- 期刊:工程力学
- 影响因子:--
- 作者:叶康生;陆天天;袁驷
- 通讯作者:袁驷
A self-adaptive one-dimensional nonlinear FEM based on EEP method
基于EEP方法的自适应一维非线性有限元法
- DOI:--
- 发表时间:--
- 期刊:Applied Mathematics and Mechanics (English Edition )
- 影响因子:--
- 作者:Si YUAN;Yan DU;Qin-yan XING;Kang-sheng YE
- 通讯作者:Kang-sheng YE
二维有限元线法自适应分析的若干新进展
- DOI:--
- 发表时间:2011
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;方楠;王旭;叶康生;邢沁妍
- 通讯作者:邢沁妍
二维自适应技术新进展:从有限元线法到有限元法
- DOI:--
- 发表时间:2011
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;徐俊杰;叶康生;邢沁妍
- 通讯作者:邢沁妍
一维EEP自适应技术新进展:从线性到非线性
- DOI:--
- 发表时间:2012
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;杜炎;邢沁妍;叶康生
- 通讯作者:叶康生
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--"}}
- 发表时间:{{ item.publish_year || "--" }}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--"}}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:{{ item.authors }}
数据更新时间:{{ patent.updateTime }}
其他文献
一维C~1有限元EEP超收敛位移计算简约格式的误差估计
- DOI:--
- 发表时间:2015
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;邢沁妍;叶康生
- 通讯作者:叶康生
有限元线法EEP超收敛计算简约格式的再简约
- DOI:--
- 发表时间:2016
- 期刊:工程力学
- 影响因子:--
- 作者:徐俊杰;袁驷
- 通讯作者:袁驷
二维变分不等式问题的自适应有限元分析
- DOI:--
- 发表时间:2016
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;刘泽洲;邢沁妍
- 通讯作者:邢沁妍
线法二阶常微分方程组有限元分析的结点精度修正及其超收敛计算
- DOI:--
- 发表时间:2022
- 期刊:工程力学
- 影响因子:--
- 作者:黄泽敏;袁驷
- 通讯作者:袁驷
基于EEP法的三维有限元超收敛计算初探
- DOI:--
- 发表时间:2016
- 期刊:工程力学
- 影响因子:--
- 作者:袁驷;吴越;徐俊杰;邢沁妍
- 通讯作者:邢沁妍
其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:{{ item.doi || "--" }}
- 发表时间:{{ item.publish_year || "--"}}
- 期刊:{{ item.journal_name }}
- 影响因子:{{ item.factor || "--" }}
- 作者:{{ item.authors }}
- 通讯作者:{{ item.author }}

内容获取失败,请点击重试

查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:
AI项目摘要
AI项目思路
AI技术路线图

请为本次AI项目解读的内容对您的实用性打分
非常不实用
非常实用
1
2
3
4
5
6
7
8
9
10
您认为此功能如何分析更能满足您的需求,请填写您的反馈:
袁驷的其他基金
高性能有限元结点位移精度修正技术的研究
- 批准号:51878383
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
基于EEP法的二维非线性有限元自适应求解研究
- 批准号:51378293
- 批准年份:2013
- 资助金额:80.0 万元
- 项目类别:面上项目
基于EEP超收敛解的有限元和有限元线法自适应求解的研究
- 批准号:50678093
- 批准年份:2006
- 资助金额:30.0 万元
- 项目类别:面上项目
有限元线法和有限元法的超收敛应力计算的研究
- 批准号:50278046
- 批准年份:2002
- 资助金额:21.0 万元
- 项目类别:面上项目
任意曲壳体结构分析的有限元线法
- 批准号:59478001
- 批准年份:1994
- 资助金额:7.5 万元
- 项目类别:面上项目
求解非线性问题的有限元线法及有限元网络法
- 批准号:19172039
- 批准年份:1991
- 资助金额:3.2 万元
- 项目类别:面上项目
有限元常微分方程线法在固体力学中的开发应用
- 批准号:18800307
- 批准年份:1988
- 资助金额:4.0 万元
- 项目类别:青年科学基金项目
相似国自然基金
{{ item.name }}
- 批准号:{{ item.ratify_no }}
- 批准年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}
相似海外基金
{{
item.name }}
{{ item.translate_name }}
- 批准号:{{ item.ratify_no }}
- 财政年份:{{ item.approval_year }}
- 资助金额:{{ item.support_num }}
- 项目类别:{{ item.project_type }}