喵ID:0m8QtC免责声明

A Nomogram Derived by Combination of Demographic and Biomarker Data Improves the Noninvasive Evaluation of Patients at Risk for Bladder Cancer.

基本信息

DOI:
10.1158/1055-9965.epi-16-0260
发表时间:
2016-09
期刊:
Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
影响因子:
--
通讯作者:
Rosser CJ
中科院分区:
其他
文献类型:
Journal Article
作者: Huang S;Kou L;Furuya H;Yu C;Goodison S;Kattan MW;Garmire L;Rosser CJ研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Improvements in the non-invasive clinical evaluation of patients at risk for bladder cancer (BCa) would be of benefit both to individuals and to healthcare systems. We investigated the potential utility of a hybrid nomogram that combined key demographic features with the results of a multiplex urinary biomarker assay in hopes of identifying patients at risk of harboring BCa. Logistic regression analysis was used to model the probability of BCa burden in a cohort of 686 subjects (394 with BCa) using key demographic features alone, biomarker data alone and the combination of demographic features and key biomarker data. We examined discrimination, calibration and decision curve analysis techniques to evaluate prediction model performance. Area under the receiver operating characteristic curve (AUROC) analyses revealed that demographic features alone predicted tumor burden with an accuracy of 0.806 [95% CI: 0.76–0.85], while biomarker data had an accuracy of 0.835 [95% CI: 0.80–0.87]. The addition of molecular data into the nomogram improved the predictive performance to 0.891 [95% CI: 0.86–0.92]. Decision curve analyses showed that the hybrid nomogram performed better than demographic or biomarker data alone. A nomogram construction strategy that combines key demographic features with biomarker data may facilitate the accurate, non-invasive evaluation of patients at risk of harboring BCa. Further research is needed to evaluate the BCa risk nomogram for potential clinical utility. The application of such a nomogram may better inform the decision to perform invasive diagnostic procedures.
对膀胱癌(BCa)高危患者进行无创临床评估的改进对个人和医疗保健系统都有益。我们研究了一种混合列线图的潜在用途,该列线图将关键人口统计学特征与一种多尿液生物标志物检测结果相结合,希望能识别出有患膀胱癌风险的患者。 采用逻辑回归分析,仅使用关键人口统计学特征、仅使用生物标志物数据以及将人口统计学特征和关键生物标志物数据相结合,对686名受试者(394名患有膀胱癌)队列中膀胱癌负荷的概率进行建模。我们通过检验判别力、校准和决策曲线分析技术来评估预测模型的性能。 受试者工作特征曲线下面积(AUROC)分析显示,仅人口统计学特征预测肿瘤负荷的准确率为0.806[95%置信区间:0.76 - 0.85],而生物标志物数据的准确率为0.835[95%置信区间:0.80 - 0.87]。将分子数据加入列线图后,预测性能提高到0.891[95%置信区间:0.86 - 0.92]。决策曲线分析表明,混合列线图比单独使用人口统计学特征或生物标志物数据的效果更好。 一种将关键人口统计学特征与生物标志物数据相结合的列线图构建策略可能有助于对有患膀胱癌风险的患者进行准确的无创评估。需要进一步研究以评估膀胱癌风险列线图的潜在临床应用价值。 这种列线图的应用可能会更好地为是否进行侵入性诊断程序的决策提供依据。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

MULTIPLEXED PROTEIN BIOMARKER-BASED ASSAY FOR THE DETECTION OF BLADDER CANCER
批准号:
10672214
批准年份:
2016
资助金额:
65.13
项目类别:
Rosser CJ
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓