喵ID:2xZXi0免责声明

SOPHIE: Generative Neural Networks Separate Common and Specific Transcriptional Responses.

基本信息

DOI:
10.1016/j.gpb.2022.09.011
发表时间:
2022-10
影响因子:
9.5
通讯作者:
Greene, Casey S.
中科院分区:
生物学2区
文献类型:
Journal Article
作者: Lee, Alexandra J.;Mould, Dallas L.;Crawford, Jake;Hu, Dongbo;Powers, Rani K.;Doing, Georgia;Costello, James C.;Hogan, Deborah A.;Greene, Casey S.研究方向: Genetics & HeredityMeSH主题词: --
来源链接:pubmed详情页地址

文献摘要

Genome-wide transcriptome profiling identifies genes that are prone to differential expression (DE) across contexts, as well as genes with changes specific to the experimental manipulation. Distinguishing genes that are specifically changed in a context of interest from common differentially expressed genes (DEGs) allows more efficient prediction of which genes are specific to a given biological process under scrutiny. Currently, common DEGs or pathways can only be identified through the laborious manual curation of experiments, an inordinately time-consuming endeavor. Here we pioneer an approach, Specific cOntext Pattern Highlighting In Expression data (SOPHIE), for distinguishing between common and specific transcriptional patterns using a generative neural network to create a background set of experiments from which a null distribution of gene and pathway changes can be generated. We apply SOPHIE to diverse datasets including those from human, human cancer, and bacterial pathogen Pseudomonas aeruginosa. SOPHIE identifies common DEGs in concordance with previously described, manually and systematically determined common DEGs. Further molecular validation indicates that SOPHIE detects highly specific but low-magnitude biologically relevant transcriptional changes. SOPHIE’s measure of specificity can complement log2 fold change values generated from traditional DE analyses. For example, by filtering the set of DEGs, one can identify genes that are specifically relevant to the experimental condition of interest. Consequently, these results can inform future research directions. All scripts used in these analyses are available at https://github.com/greenelab/generic-expression-patterns. Users can access https://github.com/greenelab/sophie to run SOPHIE on their own data.
全基因组转录组分析鉴定出在不同情境下易于差异表达(DE)的基因,以及因实验操作而发生特定变化的基因。将在特定研究情境下发生特异性变化的基因与常见的差异表达基因(DEGs)区分开来,可以更有效地预测哪些基因对于所研究的特定生物过程具有特异性。目前,常见的差异表达基因或通路只能通过费力的人工整理实验来确定,这是一项极其耗时的工作。在此,我们开创了一种方法,即表达数据中的特定情境模式突出显示(SOPHIE),利用生成式神经网络区分常见和特定的转录模式,创建一组实验背景,从中可以生成基因和通路变化的零分布。我们将SOPHIE应用于多种数据集,包括来自人类、人类癌症以及细菌病原体铜绿假单胞菌的数据。SOPHIE鉴定出的常见差异表达基因与先前描述的、通过人工和系统确定的常见差异表达基因一致。进一步的分子验证表明,SOPHIE能够检测到高度特异性但幅度较低的具有生物学相关性的转录变化。SOPHIE的特异性度量可以补充传统差异分析产生的log2倍变化值。例如,通过对差异表达基因集进行筛选,可以鉴定出与所关注的实验条件特异性相关的基因。因此,这些结果可以为未来的研究方向提供参考。这些分析中使用的所有脚本可在https://github.com/greenelab/generic - expression - patterns获取。用户可以访问https://github.com/greenelab/sophie在自己的数据上运行SOPHIE。
参考文献(48)
被引文献(2)
The CbrA-CbrB two-component regulatory system controls the utilization of multiple carbon and nitrogen sources in Pseudomonas aeruginosa
DOI:
10.1046/j.1365-2958.2001.02435.x
发表时间:
2001-05-01
期刊:
MOLECULAR MICROBIOLOGY
影响因子:
3.6
作者:
Nishijyo, T;Haas, D;Itoh, Y
通讯作者:
Itoh, Y
Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa
DOI:
10.1128/jb.186.12.3855-3861.2004
发表时间:
2004-06-01
期刊:
JOURNAL OF BACTERIOLOGY
影响因子:
3.2
作者:
Lu, CD;Yang, Z;Li, W
通讯作者:
Li, W
GAUGE-Annotated Microbial Transcriptomic Data Facilitate Parallel Mining and High-Throughput Reanalysis To Form Data-Driven Hypotheses.
DOI:
10.1128/msystems.01305-20
发表时间:
2021-03-23
期刊:
mSystems
影响因子:
6.4
作者:
Li Z;Koeppen K;Holden VI;Neff SL;Cengher L;Demers EG;Mould DL;Stanton BA;Hampton TH
通讯作者:
Hampton TH
GENCODE reference annotation for the human and mouse genomes.
DOI:
10.1093/nar/gky955
发表时间:
2019-01-08
期刊:
Nucleic acids research
影响因子:
14.9
作者:
Frankish A;Diekhans M;Ferreira AM;Johnson R;Jungreis I;Loveland J;Mudge JM;Sisu C;Wright J;Armstrong J;Barnes I;Berry A;Bignell A;Carbonell Sala S;Chrast J;Cunningham F;Di Domenico T;Donaldson S;Fiddes IT;García Girón C;Gonzalez JM;Grego T;Hardy M;Hourlier T;Hunt T;Izuogu OG;Lagarde J;Martin FJ;Martínez L;Mohanan S;Muir P;Navarro FCP;Parker A;Pei B;Pozo F;Ruffier M;Schmitt BM;Stapleton E;Suner MM;Sycheva I;Uszczynska-Ratajczak B;Xu J;Yates A;Zerbino D;Zhang Y;Aken B;Choudhary JS;Gerstein M;Guigó R;Hubbard TJP;Kellis M;Paten B;Reymond A;Tress ML;Flicek P
通讯作者:
Flicek P
Whole-genome cartography of estrogen receptor alpha binding sites.
DOI:
10.1371/journal.pgen.0030087
发表时间:
2007-06
期刊:
PLoS genetics
影响因子:
4.5
作者:
Lin CY;Vega VB;Thomsen JS;Zhang T;Kong SL;Xie M;Chiu KP;Lipovich L;Barnett DH;Stossi F;Yeo A;George J;Kuznetsov VA;Lee YK;Charn TH;Palanisamy N;Miller LD;Cheung E;Katzenellenbogen BS;Ruan Y;Bourque G;Wei CL;Liu ET
通讯作者:
Liu ET

数据更新时间:{{ references.updateTime }}

关联基金

DartCF: The Dartmouth Cystic Fibrosis Research Center
批准号:
10895149
批准年份:
2018
资助金额:
47.11
项目类别:
Greene, Casey S.
通讯地址:
Univ Colorado, Dept Biochem & Mol Genet, Sch Med, Denver, CO 80045 USA
所属机构:
Univ ColoradonUniversity of Colorado SystemnUniversity of Colorado Anschutz Medical CampusnUniversity of Colorado DenvernUniversity of Colorado Anschutz Medical Campus School of MedicinenUniversity of Colorado Anschutz Medical Campus School of MedicinenUniversity of Colorado Anschutz Medical Campus Department of Biochemistry and Molecular Genetics
电子邮件地址:
--
通讯地址历史:
Univ Penn, Genom & Computat Biol Grad Program, Philadelphia, PA 19104 USA
所属机构
Univ Penn
University of Pennsylvania
Geisel Sch Med Dartmouth, Dept Microbiol & Immunol, Hanover, NH 03755 USA
所属机构
Geisel Sch Med Dartmouth
Dartmouth College
Dartmouth College Geisel School of Medicine
Dartmouth College Department of Microbiology & Immunology
Univ Penn, Dept Syst Pharmacol & Translat Therapeut, Philadelphia, PA 19104 USA
所属机构
Univ Penn
University of Pennsylvania
Harvard Univ, Wyss Inst Biol Inspired Engn, Boston, MA 02115 USA
所属机构
Harvard Univ
Harvard University
Harvard University Wyss Institute for Biologically Inspired Engineering
Univ Colorado, Dept Pharmacol, Sch Med, Denver, CO 80045 USA
所属机构
Univ Colorado
University of Colorado System
University of Colorado Anschutz Medical Campus
University of Colorado Denver
University of Colorado Anschutz Medical Campus School of Medicine
University of Colorado Anschutz Medical Campus School of Medicine
University of Colorado Anschutz Medical Campus Department of Pharmacology
Univ Colorado, Ctr Hlth AI, Sch Med, Denver, CO 80045 USA
所属机构
Univ Colorado
University of Colorado System
University of Colorado Anschutz Medical Campus
University of Colorado Denver
University of Colorado Anschutz Medical Campus School of Medicine
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓