喵ID:6nekpp免责声明

Deterministic Fully Dynamic SSSP and More

确定性全动态 SSSP 等

基本信息

DOI:
10.1109/focs57990.2023.00142
发表时间:
2023
期刊:
2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)
影响因子:
--
通讯作者:
Adam Karczmarz
中科院分区:
文献类型:
--
作者: Jan van den Brand;Adam Karczmarz研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

We present the first non-trivial fully dynamic algorithm maintaining exact single-source distances in unweighted graphs. This resolves an open problem stated by Sankowski [COCOON 2005] and van den Brand and Nanongkai [FOCS 2019]. Previous fully dynamic single-source distances data structures were all approximate, but so far, non-trivial dynamic algorithms for the exact setting could only be ruled out for polynomially weighted graphs (Abboud and Vassilevska Williams, [FOCS 2014]). The exact unweighted case remained the main case for which neither a subquadratic dynamic algorithm nor a quadratic lower bound was known.Our dynamic algorithm works on directed graphs and is deterministic, and can report a single-source shortest paths tree in subquadratic time as well. Thus we also obtain the first deterministic fully dynamic data structure for reachability (transitive closure) with subquadratic update and query time. This answers an open problem of van den Brand, Nanongkai, and Saranurak [FOCS 2019]. Finally, using the same framework we obtain the first fully dynamic data structure maintaining all-pairs $(1+\epsilon)$-approximate distances within non-trivial sub-$n^{\omega}$ worst-case update time while supporting optimal-time approximate shortest path reporting at the same time. This data structure is also deterministic and therefore implies the first known non-trivial deterministic worst-case bound for recomputing the transitive closure of a digraph.
我们介绍了第一个非平凡的完全动态算法,该算法在未加权图中维持精确的单源距离。这解决了Sankowski [Cocoon 2005]和Van den Brand和Nanongkai [Focs 2019]提出的一个空旷的问题。以前的完全动态的单源距离数据结构都是近似的,但是到目前为止,确切设置的非平凡动态算法只能排除在多项式加权图的情况下(Abboud和Vassilevska Williams,[FOCS 2014])。确切的未加权案例仍然是主要情况,该案例既不知道,次级动态算法和二次下限都不知道。我们的动态算法在有向图上起作用,并且是确定性的,并且可以在亚次级时间中报告单源最短路径树。因此,我们还获得了第一个确定性的完全动态数据结构,以进行次级更新和查询时间的可及性(传递闭合)。这回答了Van Den Brand,Nanongkai和Saranurak的空缺问题[FOCS 2019]。最后,使用相同的框架,我们获得了第一个完全动态的数据结构,以维护all对$(1+ \ epsilon)$ - 非平凡sub- $ n^{\ omega} $差的距最佳时间近似最短路径报告同时报告。这种数据结构也是确定性的,因此意味着第一个已知的非平凡的确定性最差案例结合,用于重新计算Digraph的传递闭合。
参考文献(3)
被引文献(1)
Decremental all-pairs shortest paths in deterministic near-linear time
确定性近线性时间内的递减全对最短路径
DOI:
10.1145/3406325.3451025
发表时间:
2021
期刊:
Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing
影响因子:
0
作者:
Chuzhoy, Julia
通讯作者:
Chuzhoy, Julia
New Techniques and Fine-Grained Hardness for Dynamic Near-Additive Spanners
动态近增材扳手的新技术和细粒度硬度
DOI:
10.1137/1.9781611976465.110
发表时间:
2021
期刊:
2021
影响因子:
0
作者:
Bergamaschi, Thiago;Henzinger, Monika;Probst Gutenberg, Maximilian;Williams, Virginia Vassilevska;Wein, Nicole
通讯作者:
Wein, Nicole
Hardness of approximation in p via short cycle removal: cycle detection, distance oracles, and beyond
通过短周期去除来近似 p 的硬度:周期检测、距离预言等等
DOI:
10.1145/3519935.3520066
发表时间:
2022
期刊:
STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
影响因子:
0
作者:
Abboud, Amir;Bringmann, Karl;Khoury, Seri;Zamir, Or
通讯作者:
Zamir, Or

数据更新时间:{{ references.updateTime }}

Adam Karczmarz
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓