喵ID:VmhA1p免责声明

DETECTING FORESTS DAMAGED BY PINE WILT DISEASE AT THE INDIVIDUAL TREE LEVEL USING AIRBORNE LASER DATA AND WORLDVIEW-2/3 IMAGES OVER TWO SEASONS

基本信息

DOI:
10.5194/isprs-archives-xlii-3-w3-181-2017
发表时间:
2017-10
期刊:
ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
影响因子:
--
通讯作者:
Y. Takenaka;M. Katoh;S. Deng;K. Cheung
中科院分区:
其他
文献类型:
--
作者: Y. Takenaka;M. Katoh;S. Deng;K. Cheung研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Abstract. Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus) and Japanese pine sawyer (Monochamus alternatus). This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS) data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS) images and 18 remote sensing indices (RSI) derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.
摘要。松材线虫病是由松材线虫(Bursaphelenchus xylophilus)和松墨天牛(Monochamus alternatus)引起的。本研究试图结合机载激光扫描(ALS)数据和高分辨率星载图像来检测不同受损程度的松树。利用从ALS数据中获取的分辨率为50厘米的冠层高度模型,通过单木检测方法来描绘树冠。利用正射校正图像建立了两幅全色锐化图像。接下来,我们分析了两种强度 - 色调 - 饱和度(IHS)图像以及从全色锐化图像中得出的18种遥感指数(RSI)。针对每个树冠提取了2种IHS图像、18种RSI以及WV - 2和WV - 3图像的8个波段的均值和标准差,并使用支持向量机分类器对树冠进行分类。将单木树冠分为九类:裸地、日本落叶松、日本柳杉、日本扁柏、阔叶树、健康松树以及轻度、中度和重度受损松树。使用WV - 2图像分类的准确率在76.5%到99.6%之间,总体准确率为98.5%。然而,使用WV - 3图像分类的准确率在40.4%到95.4%之间,总体准确率为72%,这表明与从WV - 2图像得出的分类相比准确率较低。这是因为WV - 3图像是2016年10月从一个太阳高度角较低且海拔较低的区域获取的。
参考文献(4)
被引文献(11)

数据更新时间:{{ references.updateTime }}

Y. Takenaka;M. Katoh;S. Deng;K. Cheung
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓