喵ID:X4xrD9免责声明

喀斯特地区地表温度空间降尺度方法初探

基本信息

DOI:
10.3969/j.issn.1672-0504.2021.02.006
发表时间:
2021
期刊:
地理与地理信息科学
影响因子:
--
通讯作者:
唐敏
中科院分区:
其他
文献类型:
--
作者: 尹枷愿;蔡宏;田鹏举;唐敏研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

In karst areas, the terrain fluctuates greatly, and conventional downscaling methods and selected factors are not applicable to it. According to the characteristics of karst areas, this paper selects reflectivity, remote sensing indices and elevation factors as scale factors, and establishes a nonlinear relationship between MODIS band 31 and 32 radiance data and scale factors through a random forest model to construct a Karst Random Forest (KRF) model suitable for karst areas. The thermal infrared radiance with a spatial resolution of 1 km is successfully downscaled to 100 m, and finally the land surface temperature with a spatial resolution of 100 m is retrieved using the split-window algorithm. Comparing the KRF method with the multi-factor random forest regression model (MTVRF) considering only conventional factors and the thermal sharpening algorithm (TsHARP), the results show that: 1) In karst areas with different elevation differences, the KRF method can significantly improve the downscaling accuracy of land surface temperature. The root mean square error (RMSE) is 2.46 K and 1.45 K in the northwest of Zunyi City and the area south of Guiyang City respectively, which is 0.1419 K and 0.2928 K lower than that of the MTVRF model respectively, and 0.6204 K and 0.6953 K lower than that of the TsHARP algorithm respectively, and performs better in karst mountainous cities with lower terrain undulation (south of Guiyang City); 2) The KRF method also has a good effect on different land types in karst areas, with the best performance in the vegetation area, where the RMSE is 1.41 K, and the RMSE in the fragmented bare soil area is 1.84 K. The research shows that the KRF method considering special scale factors can improve the downscaling accuracy of land surface temperature in karst areas and provide a more refined and reliable land surface temperature product for research based on land surface temperature in this area.
喀斯特地区地形起伏大,常规的降尺度方法及所选择的因子对其不适用。该文根据喀斯特地区的特点,选取反射率、遥感指数及高程因子为尺度因子,通过随机森林模型建立MODIS第31、32波段辐射亮度数据和尺度因子之间的非线性关系,构建适合喀斯特地区的随机森林(Karst Random Forest,KRF)模型,成功将空间分辨率为1km的热红外辐射亮度降至100m,最后利用劈窗算法反演得到空间分辨率为100m的地表温度。将KRF方法与仅考虑常规因子的多因子随机森林回归模型(MTVRF)和热锐化算法(TsHARP)对比,结果表明:1)在不同高差的喀斯特地区,KRF方法可较大程度提高地表温度降尺度精度,均方根误差(RMSE)在遵义市西北部和贵阳市以南地区分别为2.46K和1.45K,较MTVRF模型分别降低了0.1419K和0.2928K,较TsHARP算法分别降低了0.6204K和0.6953K,且在地形起伏度较低的喀斯特山区城市(贵阳市以南)表现更好;2)在喀斯特地区不同地类上,KRF方法效果也较好,其中植被区域最优,RMSE为1.41K,破碎的裸土区域RMSE为1.84K。研究显示,考虑特殊尺度因子的KRF方法可提高喀斯特地区地表温度的降尺度精度,为该地区以地表温度为基础的研究提供更精细可靠的地表温度产品。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

河流水质对岩溶山地坡面景观变化响应的时空模拟-以赤水河为例
批准号:
41901225
批准年份:
2019
资助金额:
24.0
项目类别:
青年科学基金项目
唐敏
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓