喵ID:a6s7xV免责声明

Predicting peak inundation depths with a physics informed machine learning model

使用基于物理的机器学习模型预测洪水峰值深度

基本信息

DOI:
--
发表时间:
2024
影响因子:
4.6
通讯作者:
Ali Mostafavi
中科院分区:
综合性期刊3区
文献类型:
--
作者: Cheng;Lipai Huang;Federico Antolini;Matthew Garcia;Andrew Juan;Samuel D. Brody;Ali Mostafavi研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Timely, accurate, and reliable information is essential for decision-makers, emergency managers, and infrastructure operators during flood events. This study demonstrates that a proposed machine learning model, MaxFloodCast, trained on physics-based hydrodynamic simulations in Harris County, offers efficient and interpretable flood inundation depth predictions. Achieving an average documentclass[12pt]{minimal} usepackage{amsmath} usepackage{wasysym} usepackage{amsfonts} usepackage{amssymb} usepackage{amsbsy} usepackage{mathrsfs} usepackage{upgreek} setlength{oddsidemargin}{-69pt} egin{document}$$R^2$$end{document}R2 of 0.949 and a Root Mean Square Error of 0.61 ft (0.19 m) on unseen data, it proves reliable in forecasting peak flood inundation depths. Validated against Hurricane Harvey and Tropical Storm Imelda, MaxFloodCast shows the potential in supporting near-time floodplain management and emergency operations. The model’s interpretability aids decision-makers in offering critical information to inform flood mitigation strategies, to prioritize areas with critical facilities and to examine how rainfall in other watersheds influences flood exposure in one area. The MaxFloodCast model enables accurate and interpretable inundation depth predictions while significantly reducing computational time, thereby supporting emergency response efforts and flood risk management more effectively.
在洪水事件期间,及时、准确和可靠的信息对于决策者、应急管理人员和基础设施运营商至关重要。这项研究表明,一个提出的机器学习模型MaxFloodCast,基于哈里斯县基于物理的流体动力学模拟进行训练,能够提供高效且可解释的洪水淹没深度预测。在未见过的数据上,其平均$R^2$达到0.949,均方根误差为0.61英尺(0.19米),证明在预测洪水峰值淹没深度方面是可靠的。通过与飓风哈维和热带风暴伊梅尔达进行验证,MaxFloodCast显示出在支持近实时洪泛区管理和应急行动方面的潜力。该模型的可解释性有助于决策者提供关键信息,为洪水缓解策略提供依据,确定具有关键设施区域的优先级,并研究其他流域的降雨如何影响一个地区的洪水暴露情况。MaxFloodCast模型能够进行准确且可解释的淹没深度预测,同时显著减少计算时间,从而更有效地支持应急响应工作和洪水风险管理。
参考文献(3)
被引文献(0)
A spatial-temporal graph deep learning model for urban flood nowcasting leveraging heterogeneous community features.
DOI:
10.1038/s41598-023-32548-x
发表时间:
2023-04-25
期刊:
SCIENTIFIC REPORTS
影响因子:
4.6
作者:
Farahmand, Hamed;Xu, Yuanchang;Mostafavi, Ali
通讯作者:
Mostafavi, Ali
Predicting combined tidal and pluvial flood inundation using a machine learning surrogate model
DOI:
10.1016/j.ejrh.2022.101087
发表时间:
2022-06
期刊:
Journal of Hydrology: Regional Studies
影响因子:
0
作者:
F. T. Zahura;J. Goodall
通讯作者:
F. T. Zahura;J. Goodall
Machine learning techniques for robotic and autonomous inspection of mechanical systems and civil infrastructure
DOI:
10.1007/s43684-022-00025-3
发表时间:
2022-01-01
期刊:
Autonomous Intelligent Systems
影响因子:
0
作者:
Macaulay, M O.
通讯作者:
Macaulay, M O.

数据更新时间:{{ references.updateTime }}

Ali Mostafavi
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓