喵ID:cGjW6J免责声明

Supercritical thermophysical properties prediction of multi-component hydrocarbon fuels based on artificial neural network models

基于人工神经网络模型的多元烃燃料超临界热物性预测

基本信息

DOI:
10.1007/s11431-021-1931-9
发表时间:
2021-12-16
影响因子:
4.6
通讯作者:
Yao, MingFa
中科院分区:
工程技术2区
文献类型:
Article
作者: Ming, ZhenYang;Liu, HaiFeng;Yao, MingFa研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

A good understanding of the thermophysical properties of hydrocarbon fuels at supercritical pressure is important to research on experiment and numerical simulation of fuel supercritical spray. Experimental measurements are difficult to conduct directly because of the extremely high pressure and high temperature. In this study, back propagation (BP) neural network, BP optimized by mind evolution algorithm (MEA-BP) and BP neural network optimized by genetic algorithm (GA-BP) are established to determine the nonlinear temperature-dependent thermophysical properties of density, viscosity, and isobaric specific heat (C-p) of hydrocarbon fuels at supercritical pressure Meanwhile, approximate formulas for these properties prediction are primarily proposed using polynomial fitting In this paper, models that can predict three types of physical properties of three kinds of hydrocarbon fuels and their mixtures in a wide temperature range under supercritical pressure are established In the prediction of density and C-p, BP neural network has a good prediction effect. The results show that the MAPE is lower than 2% in the prediction of density and C-p, but the MAPE of viscosity prediction is slightly higher than 5% using BP. Furthermore, MEA and GA are used to optimize the prediction of viscosity. The optimization effect and computation of the MEA is better than that of GA because MEA does not have the local optimization and prematurity problems. The present work offers an efficient tool to predict the thermophysical properties of hydrocarbon fuels over a wide range of temperatures under supercritical pressure which can be easily extended to other fuels of interest. It will be beneficial to the experiment and numerical simulation studies of supercritical sprays.
深入了解碳氢燃料在超临界压力下的热物理性质对于燃料超临界喷雾的实验研究和数值模拟至关重要。由于极高的压力和温度,直接进行实验测量非常困难。在本研究中,建立了反向传播(BP)神经网络、思维进化算法优化的BP(MEA - BP)以及遗传算法优化的BP(GA - BP)神经网络,用于确定碳氢燃料在超临界压力下密度、粘度和等压比热容(\(C_p\))随温度变化的非线性热物理性质。同时,初步提出了使用多项式拟合来预测这些性质的近似公式。本文建立了能够预测三种碳氢燃料及其混合物在超临界压力下较宽温度范围内的三类物理性质的模型。在密度和\(C_p\)的预测中,BP神经网络具有良好的预测效果。结果表明,在密度和\(C_p\)的预测中,平均绝对百分比误差(MAPE)低于2%,但使用BP预测粘度时,MAPE略高于5%。此外,使用MEA和GA对粘度预测进行优化。由于MEA不存在局部最优和早熟问题,其优化效果和计算性能优于GA。本研究提供了一种有效的工具,用于预测碳氢燃料在超临界压力下较宽温度范围内的热物理性质,该工具可轻松扩展到其他感兴趣的燃料。这将有利于超临界喷雾的实验和数值模拟研究。
参考文献(61)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

不同燃料极端条件下的喷雾燃烧机理及燃烧控制方法研究
批准号:
91941102
批准年份:
2019
资助金额:
60.0
项目类别:
重大研究计划
Yao, MingFa
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓