喵ID:eFQT5V免责声明

Comparison of machine learning and electrical resistivity arrays to inverse modeling for locating and characterizing subsurface targets

基本信息

DOI:
10.1016/j.jappgeo.2024.105493
发表时间:
2024-10-01
期刊:
Research article
影响因子:
--
通讯作者:
Kenneth C. Carroll
中科院分区:
文献类型:
research papers
作者: Ahsan Jamil;Dale F. Rucker;Dan Lu;Scott C. Brooks;Alexandre M. Tartakovsky;Huiping Cao;Kenneth C. Carroll研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

This study evaluates the performance of multiple machine learning (ML) algorithms and electrical resistivity (ER) arrays for inversion with comparison to a conventional Gauss-Newton numerical inversion method. Four different ML models and four arrays were used for the estimation of only six variables for locating and characterizing hypothetical subsurface targets. The combination of dipole-dipole with Multilayer Perceptron Neural Network (MLP-NN) had the highest accuracy. Evaluation showed that both MLP-NN and Gauss-Newton methods performed well for estimating the matrix resistivity while target resistivity accuracy was lower, and MLP-NN produced sharper contrast at target boundaries for the field and hypothetical data. Both methods exhibited comparable target characterization performance, whereas MLP-NN had increased accuracy compared to Gauss-Newton in prediction of target width and height, which was attributed to numerical smoothing present in the Gauss-Newton approach. MLP-NN was also applied to a field dataset acquired at U.S. DOE Hanford site.
本研究评估了多种机器学习(ML)算法和电阻率(ER)阵列在反演方面的性能,并与传统的高斯 - 牛顿数值反演方法进行了比较。使用了四种不同的ML模型和四种阵列来估计仅六个变量,以定位和描述假设的地下目标。偶极 - 偶极与多层感知器神经网络(MLP - NN)的组合具有最高的准确性。评估表明,MLP - NN和高斯 - 牛顿方法在估计基质电阻率方面表现良好,而目标电阻率的准确性较低,并且对于实地和假设数据,MLP - NN在目标边界处产生了更鲜明的对比。两种方法在目标描述性能方面表现相当,然而在预测目标宽度和高度方面,与高斯 - 牛顿方法相比,MLP - NN的准确性有所提高,这归因于高斯 - 牛顿方法中存在的数值平滑。MLP - NN还应用于在美国能源部汉福德站点获取的实地数据集。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Kenneth C. Carroll
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓