喵ID:hZX8Tu免责声明

基于贝塞尔曲线的动态识别区农机避障路径实时规划

基本信息

DOI:
10.11975/j.issn.1002-6819.2022.06.004
发表时间:
2022
期刊:
农业工程学报
影响因子:
--
通讯作者:
陈黎卿
中科院分区:
其他
文献类型:
--
作者: 杨洋;温兴;马强龙;张刚;程尚坤;齐健;陈志桢;陈黎卿研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

To solve the problem of real-time path planning for agricultural machinery to avoid obstacles during field operations, this research proposes an algorithm for real-time planning of obstacle avoidance paths for agricultural machinery using cubic Bezier curves in a dynamic recognition area. Firstly, a dynamic recognition area for the walking of agricultural machinery operations is constructed, and obstacles are perceived by a laser radar in the dynamic recognition area. Then, the selection range of control points for the obstacle avoidance path is calculated using the obstacle information, and a path cluster satisfying multiple constraints such as the minimum turning radius of the agricultural machinery is generated. At the same time, the optimal obstacle avoidance path is selected from the path cluster with the goal of minimizing curvature. Finally, a real-time obstacle avoidance path planning experiment is carried out. The experimental results show that the maximum curvature and average curvature of the obstacle avoidance path planned by the algorithm in this paper are 0.126 and 0.054 m⁻¹ respectively; the maximum lateral error and average lateral error generated during the path tracking process are 0.12 and 0.057 m respectively; and the distance from the tractor to the outer contour of the obstacle is greater than 0.375 m. Compared with existing algorithms, the maximum curvature and average curvature of the obstacle avoidance path planned by the algorithm in this paper are reduced by 25.9% and 42.6% respectively, and the maximum lateral error and average lateral error generated during the path tracking process are reduced by 36.8% and 28.8% respectively. The research results can provide technical support for unmanned tractor operations.
为解决农机田间作业避障路径实时规划问题,该研究提出一种在动态识别区内利用三阶贝塞尔曲线实时规划农机避障路径算法。首先构建农机作业行走动态识别区,在动态识别区内利用激光雷达感知障碍物。然后利用障碍物信息计算避障路径控制点选取范围,生成满足农机最小转弯半径等多约束条件下的路径簇,同时以曲率最小为目标从路径簇中选取最优避障路径。最后进行避障路径实时规划试验。试验结果表明,本文算法规划的避障路径最大曲率和平均曲率分别为0.126和0.054 m~(-1);路径跟踪过程中产生的最大横向误差和平均横向误差分别为0.12和0.057 m;拖拉机到障碍物外轮廓的距离大于0.375 m。和现有算法比较,本文算法规划的避障路径最大曲率和平均曲率分别减少25.9%和42.6%,路径跟踪过程中产生的最大横向误差和平均横向误差分别减少36.8%和28.8%。研究结果可为拖拉机无人驾驶作业提供技术支撑。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

拖拉机组驾驶员持续疲劳状态腰椎加速损伤机理及其减损控制方法
批准号:
51905004
批准年份:
2019
资助金额:
25.0
项目类别:
青年科学基金项目
陈黎卿
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓