喵ID:k4CDD8免责声明

Assessing the efficacy of machine learning techniques to characterize soybean defoliation from unmanned aerial vehicles

基本信息

DOI:
10.1016/j.compag.2021.106682
发表时间:
2022-01-20
影响因子:
8.3
通讯作者:
Stewart, Christopher
中科院分区:
农林科学1区
文献类型:
Article
作者: Zhang, Zichen;Khanal, Sami;Stewart, Christopher研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Severe crop defoliation caused by insects and pests is linked to low agricultural productivity. If the root cause is not addressed, severe defoliation spreads, damaging whole crop fields. Understanding which areas are afflicted by severe defoliation can help farmers manage crops. Unmanned Aerial Vehicles (UAV) can fly over whole crop fields capturing detailed images. However, it is hard to characterize crop defoliation from aerial images that include multiple, overlapping plants with confounding effects from shadows and lighting. This paper assesses the efficacy of machine learning techniques to characterize defoliation. Given an UAV image as input, these techniques detect if severe defoliation is present. We created a labeled data set on soybean defoliation that comprises over 97,000 UAV images. We compared machine learning techniques ranging from Naive Bayes to neural networks and assessed their efficacy for (1) correctly characterizing images that contain defoliated crops and (2) avoiding wrong characterizations of healthy crops as defoliated. None of the techniques studied achieved high efficacy on both questions. However, we created DefoNet, a convolutional neural network designed for detecting crop defoliation that produces models that can be efficacious for either question. If adopted in practice, DefoNet models can guide decision making for mitigating crop yield losses due to defoliating insects.
昆虫和害虫导致的严重作物落叶与农业生产率低下有关。如果不解决根本原因,严重的落叶现象会蔓延,损害整片农田。了解哪些区域受到严重落叶的影响有助于农民管理作物。无人机(UAV)可以飞越整片农田,拍摄详细的图像。然而,从包含多个相互重叠的植物且受阴影和光照干扰影响的航拍图像中很难描述作物落叶的特征。本文评估了机器学习技术用于描述落叶特征的效果。以无人机图像作为输入,这些技术检测是否存在严重落叶。我们创建了一个关于大豆落叶的标注数据集,其中包含超过97000张无人机图像。我们比较了从朴素贝叶斯到神经网络等机器学习技术,并评估了它们在以下两方面的效果:(1)正确描述包含落叶作物的图像;(2)避免将健康作物错误地描述为落叶作物。所研究的技术在这两个问题上都没有取得高效能。然而,我们创建了DefoNet,这是一种专为检测作物落叶而设计的卷积神经网络,它所生成的模型对上述两个问题中的任何一个都可能有效。如果在实践中采用,DefoNet模型可以指导决策,以减轻因食叶昆虫导致的作物产量损失。
参考文献(60)
被引文献(0)

数据更新时间:{{ references.updateTime }}

关联基金

IIS: EAGER: Benchmarks for Autonomous Unmanned Aerial Vehicles in Agriculture Applications
批准号:
1749501
批准年份:
2017
资助金额:
22.5
项目类别:
Standard Grant
Stewart, Christopher
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓