Rapid design and development of the emergent ultrawide-bandgap semiconductors [Formula: see text] and [Formula: see text] require a compact model of their electronic structures, accurate over the broad energy range accessed in future high-field, high-frequency, and high-temperature electronics and visible and ultraviolet photonics. A minimal tight-binding model is developed to reproduce the first-principles electronic structures of the [Formula: see text]- and [Formula: see text]-phases of [Formula: see text] and [Formula: see text] throughout their reciprocal spaces. Application of this model to [Formula: see text]-[Formula: see text]-[Formula: see text] superlattices reveals that intersubband transitions can be engineered to the [Formula: see text] telecommunications wavelength, opening new directions in oxide photonics. Furthermore, by accurately reproducing the bandgap, orbital character, effective mass, and high-energy features of the conduction band, this compact model will assist in the investigation and design of the electrical and optical properties of bulk materials, devices, and quantum confined heterostructures.
新兴的超宽禁带半导体[公式:见正文]和[公式:见正文]的快速设计和开发需要其电子结构的紧凑模型,该模型在未来高场、高频、高温电子学以及可见光和紫外光光子学所涉及的宽能量范围内都要准确。开发了一个最小紧束缚模型,以在整个倒易空间中重现[公式:见正文]和[公式:见正文]的[公式:见正文]相和[公式:见正文]相的第一性原理电子结构。将该模型应用于[公式:见正文]-[公式:见正文]-[公式:见正文]超晶格表明,可以将子带间跃迁设计到[公式:见正文]电信波长,为氧化物光子学开辟了新方向。此外,通过准确重现导带的带隙、轨道特性、有效质量和高能特征,这个紧凑模型将有助于研究和设计块状材料、器件以及量子受限异质结构的电学和光学性质。