喵ID:sYFDWW免责声明

Direct Imaging of Monovacancy-Hydrogen Complexes in a Single Graphitic Layer

基本信息

DOI:
10.1103/physrevb.89.155405
发表时间:
2013-10
影响因子:
3.7
通讯作者:
M. Ziatdinov;S. Fujii;K. Kusakabe;M. Kiguchi;Takehiko Mori;T. Enoki
中科院分区:
物理与天体物理2区
文献类型:
--
作者: M. Ziatdinov;S. Fujii;K. Kusakabe;M. Kiguchi;Takehiko Mori;T. Enoki研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Understanding how foreign chemical species bond to atomic vacancies in graphene layers can advance our ability to tailor the electronic and magnetic properties of defective graphenic materials. Here we use ultra-high vacuum scanning tunneling microscopy (UHV-STM) and density functional theory to identify the precise structure of hydrogenated single atomic vacancies in a topmost graphene layer of graphite and establish a connection between the details of hydrogen passivation and the electronic properties of a single atomic vacancy. Monovacancy-hydrogen complexes are prepared by sputtering of the graphite surface layer with low energy ions and then exposing it briefly to an atomic hydrogen environment. High-resolution experimental UHV-STM imaging allows us to determine unambiguously the positions of single missing atoms in the defective graphene lattice and, in combination with the ab initio calculations, provides detailed information about the distribution of low-energy electronic states on the periphery of the monovacancy-hydrogen complexes. We found that a single atomic vacancy where each sigma-dangling bond is passivated with one hydrogen atom shows a well-defined signal from the non-bonding pi-state which penetrates into the bulk with a (\sqrt 3 \times \sqrt 3)R30^ \circ periodicity. However, a single atomic vacancy with full hydrogen termination of sigma-dangling bonds and additional hydrogen passivation of the extended pi-state at one of the vacancy's monohydrogenated carbon atoms is characterized by complete quenching of low-energy localized states. In addition, we discuss the migration of hydrogen atoms at the periphery of the monovacancy-hydrogen complexes which dramatically change the vacancy's low-energy electronic properties, as observed in our low-bias high-resolution STM imaging.
理解外来化学物质如何与石墨烯层中的原子空位结合,能够提高我们定制有缺陷的石墨烯材料的电子和磁性性能的能力。在此,我们利用超高真空扫描隧道显微镜(UHV - STM)和密度泛函理论来确定石墨最顶层石墨烯层中氢化单原子空位的精确结构,并在氢钝化的细节与单原子空位的电子性能之间建立联系。单空位 - 氢复合物是通过用低能离子溅射石墨表面层,然后将其短暂暴露于原子氢环境中制备的。高分辨率的实验性UHV - STM成像使我们能够明确确定缺陷石墨烯晶格中单个缺失原子的位置,并且结合从头算计算,提供了关于单空位 - 氢复合物周边低能电子态分布的详细信息。我们发现,每个σ - 悬空键都被一个氢原子钝化的单原子空位显示出来自非键合π态的明确信号,该信号以(\(\sqrt{3}×\sqrt{3}\))\(R30^{\circ}\)周期性渗透到体相中。然而,在空位的一个单氢化碳原子上,σ - 悬空键完全被氢终止且扩展的π态被额外氢钝化的单原子空位,其特征是低能局域态完全猝灭。此外,我们讨论了单空位 - 氢复合物周边氢原子的迁移,正如我们在低偏压高分辨率STM成像中所观察到的,这种迁移极大地改变了空位的低能电子性能。
参考文献(6)
被引文献(46)

数据更新时间:{{ references.updateTime }}

M. Ziatdinov;S. Fujii;K. Kusakabe;M. Kiguchi;Takehiko Mori;T. Enoki
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓