喵ID:v0NxX2免责声明

Multiscale preconditioning of Stokes flow in complex porous geometries

基本信息

DOI:
10.1016/j.jcp.2024.113541
发表时间:
2025-01-15
期刊:
Research article
影响因子:
--
通讯作者:
Kangan Li
中科院分区:
文献类型:
regular papers
作者: Yashar Mehmani;Kangan Li研究方向: -- MeSH主题词: --
关键词: --
来源链接:pubmed详情页地址

文献摘要

Fluid flow through porous media is central to many subsurface (e.g., CO2 storage) and industrial (e.g., fuel cell) applications. The optimization of design and operational protocols, and quantifying the associated uncertainties, requires fluid-dynamics simulations inside the microscale void space of porous samples. This often results in large and ill-conditioned linear(ized) systems that require iterative solvers, for which preconditioning is key to ensure rapid convergence. We present robust and efficient preconditioners for the accelerated solution of saddle-point systems arising from the discretization of the Stokes equation on geometrically complex porous microstructures. They are based on the recently proposed pore-level multiscale method (PLMM) and the more established reduced-order method called the pore network model (PNM). The four preconditioners presented are the monolithic PLMM, monolithic PNM, block PLMM, and block PNM. Compared to existing block preconditioners, accelerated by the algebraic multigrid method, we show our preconditioners are far more robust and efficient. The monolithic PLMM is an algebraic reformulation of the original PLMM, which renders it portable and amenable to non-intrusive implementation in existing software. Similarly, the monolithic PNM is an algebraization of PNM, allowing it to be used as an accelerator of direct numerical simulations (DNS). This bestows PNM with the, heretofore absent, ability to estimate and control prediction errors. The monolithic PLMM/PNM can also be used as approximate solvers that yield globally flux-conservative solutions, usable in many practical settings. We systematically test all preconditioners on 2D/3D geometries and show the monolithic PLMM outperforms all others. All preconditioners can be built and applied on parallel machines.
流体通过多孔介质的流动对于许多地下(例如二氧化碳储存)和工业(例如燃料电池)应用至关重要。设计和操作方案的优化以及相关不确定性的量化,需要在多孔样本的微观孔隙空间内进行流体动力学模拟。这通常会产生大型且条件不佳的线性(化)系统,需要迭代求解器,而预处理对于确保快速收敛至关重要。我们提出了稳健且高效的预处理器,用于加速求解在几何复杂的多孔微观结构上对斯托克斯方程离散化所产生的鞍点系统。它们基于最近提出的孔隙级多尺度方法(PLMM)以及更成熟的称为孔隙网络模型(PNM)的降阶方法。所提出的四种预处理器是整体式PLMM、整体式PNM、块式PLMM和块式PNM。与现有的由代数多重网格方法加速的块预处理器相比,我们表明我们的预处理器更加稳健和高效。整体式PLMM是原始PLMM的一种代数重构,这使其具有可移植性,并易于在现有软件中进行非侵入式实现。类似地,整体式PNM是PNM的一种代数化,使其能够用作直接数值模拟(DNS)的加速器。这赋予了PNM此前所不具备的估计和控制预测误差的能力。整体式PLMM/PNM也可作为近似求解器,产生全局通量守恒的解,可用于许多实际情况。我们在二维/三维几何形状上系统地测试了所有预处理器,并表明整体式PLMM优于所有其他预处理器。所有预处理器都可以在并行机器上构建和应用。
参考文献(0)
被引文献(0)

数据更新时间:{{ references.updateTime }}

Kangan Li
通讯地址:
--
所属机构:
--
电子邮件地址:
--
免责声明免责声明
1、猫眼课题宝专注于为科研工作者提供省时、高效的文献资源检索和预览服务;
2、网站中的文献信息均来自公开、合规、透明的互联网文献查询网站,可以通过页面中的“来源链接”跳转数据网站。
3、在猫眼课题宝点击“求助全文”按钮,发布文献应助需求时求助者需要支付50喵币作为应助成功后的答谢给应助者,发送到用助者账户中。若文献求助失败支付的50喵币将退还至求助者账户中。所支付的喵币仅作为答谢,而不是作为文献的“购买”费用,平台也不从中收取任何费用,
4、特别提醒用户通过求助获得的文献原文仅用户个人学习使用,不得用于商业用途,否则一切风险由用户本人承担;
5、本平台尊重知识产权,如果权利所有者认为平台内容侵犯了其合法权益,可以通过本平台提供的版权投诉渠道提出投诉。一经核实,我们将立即采取措施删除/下架/断链等措施。
我已知晓