Robust Stability: System-Theoretic Approach
鲁棒稳定性:系统理论方法
基本信息
- 批准号:8703215
- 负责人:
- 金额:$ 4.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1987
- 资助国家:美国
- 起止时间:1987-08-01 至 1989-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research concerns a system-theoretic approach to determine the stability (assessed in terms of the strict Hurwitz property) of interval polynomials (i.e. those having coefficient uncertainties which vary independently over specified ranges) having real or complex coefficients. The underlying procedure not only proves the recent results of Kharitonov but, more importantly, offer potentialities for generalization to the bivariate and, subsequently, the multivariate cases for both continuous-time/space and discrete-time/space dynamical systems. This research is important because multidimensional feedback systems have been proposed for various purposes such as iterative image processing and image restoration. Such image processing systems that contain feedback loops are sometimes known to oscillate in space and time and these undesirable oscillations can only be avoided if proper stability conditions are imposed on the feedback systems, especially subject to the practical requirement that the coefficients of the characteristic polynomial are each bounded from above and below instead of being known with certainty. The first part of this research will be concerned with establishing conditions to guarantee that the zero-set of multivariate interval polynomials belong to commonly specified polydomains of interest. Second, the scopes for adapting the system-theoretic approach developed to handle the interval or "boxed" type of coefficient uncertainties to the case when dependencies in the variation of the polynomial coefficient set are allowed, will be investigated. Finally, the counterpart of the results derived in the first and, possibly, the second phase of research which exist in the case of more general polydomains will be investigated and research into the stability of robust matrix polynomials will be initiated. In summary, the aim of this research is to develop a system-theoretic approach allowing the determination of the stability of interval polynomials (i.e. those having coefficient uncertainties which vary over specified ranges). This research has potential applications to image processing and restoration techniques.
这项研究涉及一个系统理论的方法来确定 的稳定性(根据严格的Hurwitz性质评估) 区间多项式(即具有系数不确定性的那些 其在特定范围内独立变化)具有真实的或复数 系数其背后的程序不仅证明了 Kharitonov的结果,但更重要的是,提供了潜力, 推广到二元,随后,多元 连续时间/空间和离散时间/空间动力学的情况 系统. 这项研究很重要,因为多维反馈 已经提出了用于各种目的的系统 图像处理和图像恢复。 这样的图像处理系统 包含反馈回路的系统有时会在空间中振荡 只有在以下情况下才能避免这些不希望的振荡 对反馈系统施加适当的稳定性条件, 特别是在实际要求下, 的特征多项式分别从上到下有界 而不是被确定地知道。 第一部分 研究将涉及创造条件, 多元区间多项式的零集属于 通常指定的感兴趣的多域。 第二,范围 采用系统理论方法来处理 区间或“盒装”类型的系数不确定性,当 多项式系数集的变化的依赖性是 如果允许,将被调查。 最后, 第一阶段和可能的第二阶段取得的成果, 在更一般的多域情况下存在的研究将是 鲁棒矩阵稳定性的研究 将启动多项式。总之,本研究的目的是 开发一种系统理论方法,可以确定 区间多项式(即具有系数 在指定范围内变化的不确定性)。 本研究 图像处理和恢复技术的潜在应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nirmal Bose其他文献
Nirmal Bose的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nirmal Bose', 18)}}的其他基金
Matrix Factorization Theory for Multidimensional Systems Applications
多维系统应用的矩阵分解理论
- 批准号:
0080499 - 财政年份:2000
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Analytic and Computational Approaches to Tackling Uncertainties in Spatio-Temporal Systems
解决时空系统不确定性的分析和计算方法
- 批准号:
9711590 - 财政年份:1997
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
Robust Performance: Multi-Dimensional Systems Approach
稳健的性能:多维系统方法
- 批准号:
9508620 - 财政年份:1995
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Analysis and Training of Neural Networks Using Voronoi Diagrams and Graph Decomposition
使用 Voronoi 图和图分解来分析和训练神经网络
- 批准号:
9114997 - 财政年份:1991
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Boundary Implications for Interval Function Properties
区间函数属性的边界含义
- 批准号:
8817366 - 财政年份:1989
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Expedited Award for Novel Research: Fast Polynomial Evaluation and Its Applications
新颖研究加急奖:快速多项式评估及其应用
- 批准号:
8801634 - 财政年份:1988
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Multidimensional Systems Design: Novel Directions
多维系统设计:新方向
- 批准号:
8696113 - 财政年份:1986
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Multidimensional Systems Design: Novel Directions
多维系统设计:新方向
- 批准号:
8415599 - 财政年份:1985
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Multidimensional Systems Theory For Engineering Applications
工程应用的多维系统理论
- 批准号:
7823141 - 财政年份:1978
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
Implementation of Multidimensional Positivity Algorithms Using Modular Methods
使用模块化方法实现多维积极性算法
- 批准号:
7684161 - 财政年份:1977
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
相似国自然基金
随机激励下多稳态系统的临界过渡识别及Basin Stability分析
- 批准号:11872305
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Development of Power System Stability Analysis Method Using Physics-Informed Machine Learning
利用物理信息机器学习开发电力系统稳定性分析方法
- 批准号:
23K13326 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Stability Analysis of Power System with Massive Power Electronic Devices
含有大量电力电子器件的电力系统稳定性分析
- 批准号:
DP230100801 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Discovery Projects
DMS/NIGMS 2: A Stability Driven Recommendation System for Efficient Disease Mechanistic Discovery
DMS/NIGMS 2:用于高效疾病机制发现的稳定性驱动推荐系统
- 批准号:
10793779 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
MutSensor System: A Set of Highly Sensitive Mutation Reporters to Dissect Genome Stability in Health and Disease
MutSensor 系统:一组高度灵敏的突变报告基因,用于剖析健康和疾病中基因组的稳定性
- 批准号:
10737167 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Temporal-Spatial Data Analytics for Stochastic Power System Stability
随机电力系统稳定性的时空数据分析
- 批准号:
DE220101277 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Discovery Early Career Researcher Award
Central Nervous System Control of Dynamic Stability
动态稳定性的中枢神经系统控制
- 批准号:
RGPIN-2018-06079 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Discovery Grants Program - Individual
Making INformed Decisions in Gaze and Postural Stability (MINDGAPS): a Novel System for Improving Personalized Care and Patient Adherence in Vestibular Rehabilitation
在凝视和姿势稳定性 (MINDGAPS) 方面做出明智的决策:一种用于改善前庭康复中的个性化护理和患者依从性的新系统
- 批准号:
10436571 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Making INformed Decisions in Gaze and Postural Stability (MINDGAPS): a Novel System for Improving Personalized Care and Patient Adherence in Vestibular Rehabilitation
在凝视和姿势稳定性 (MINDGAPS) 方面做出明智的决策:一种用于改善前庭康复中的个性化护理和患者依从性的新系统
- 批准号:
10610466 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Design and Stability of Gerber Roof Framing System
Gerber屋顶框架系统的设计及稳定性
- 批准号:
563536-2021 - 财政年份:2021
- 资助金额:
$ 4.88万 - 项目类别:
University Undergraduate Student Research Awards
Power System Stability Analysis and Control Using Statistical Machine Learning Techniques
使用统计机器学习技术的电力系统稳定性分析与控制
- 批准号:
RGPIN-2016-05734 - 财政年份:2021
- 资助金额:
$ 4.88万 - 项目类别:
Discovery Grants Program - Individual