Research Initiation Award: Dynamics and Stability of Multi-Flexible/Rigid-Body Systems Using Geometrically-Exact Theories: Formulation & Computation
研究启动奖:使用几何精确理论的多柔性/刚体系统的动力学和稳定性:公式
基本信息
- 批准号:8909153
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-08-15 至 1992-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research is a response to the need for the development of a unified formulation for the dynamics of multi flexible/rigid body systems, and for the development of computational methods for efficient integration of the equations of motion of such systems. This unification of multibody dynamics formulations is founded upon the concept of geometrically exact structural theories, theories which are nonlinear in character and where the geometry of deformation is exactly described and deformation can be large. The claim is made that the geometrically exact structure formulation can be used to treat closed loop chains with flexible links and avoid the difficulties imposed by non holonomic constraints when traditional methods are employed. To pave the way to the above stated goal, this project explores several specific topics related to flexible multibody systems. These include 1) development of a unified formulation for multi body systems using geometrically exact structural models; 2) study of the accuracy and stability characteristics of component digital/algebraic equations; 3) formulation of geometrically exact models for beams with prismatic joints; 4) incorporation of gyro elastic material into the geometrically exact beam model; 5) study of the implementation of cell to cell mapping to evaluate the stability of geometrically exact models in a parallel computing environment. This research is broad in scope, fundamental in nature, and interdisciplinary in content. Its successful completion will have a measurable impact on the unification goal alluded to earlier. Tools developed herein can be used to assess the dynamic response and stability of multi flexible/rigid body systems which are prevalent in robotics, machine design, high speed ground transportation vehicles, aircraft and spacecraft technologies.
这项研究是对发展一种 多柔/刚体动力学的统一公式 系统,并为计算方法的发展, 有效地整合这些系统的运动方程。 这种统一的多体动力学公式是建立在 根据几何精确结构理论的概念, 这些理论在性质上是非线性的, 变形的精确描述和变形可以是大的。 有人声称,几何上精确的结构 配方可用于处理具有柔性的闭环链, 链接和避免非完整性带来的困难 在使用传统方法时, 铺平 为了实现上述目标,本项目探讨了几个 与柔性多体系统相关的特定主题。 这些 包括:1)建立多体统一计算公式 使用几何精确结构模型的系统; 2)研究 元件精度和稳定性特性 数字/代数方程; 3)几何公式 棱柱形节点梁的精确模型; 4) 陀螺仪弹性材料的几何精确梁模型; 5) 研究细胞到细胞映射的实施,以评估 几何精确模型的稳定性 计算环境 这项研究的范围很广, 本质上是基础性的,内容上是跨学科的。 其 成功完成将对 前面提到的统一目标。 在此开发的工具可以 可用于评估多个系统的动态响应和稳定性 在机器人技术中普遍存在的柔性/刚性体系统, 机械设计,高速地面运输车辆, 飞机和航天器技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Loc Vu-Quoc其他文献
A co-rotational triangular finite element for large deformation analysis of smooth, folded and multi-shells
用于光滑、折叠和多壳大变形分析的同转三角形有限元
- DOI:
10.1007/s00707-020-02884-4 - 发表时间:
2021-02 - 期刊:
- 影响因子:2.7
- 作者:
Zhongxue Li;Haoyan Wei;Loc Vu-Quoc;Bassam A. Izzuddin;Xin Zhuo;Tianzong Li - 通讯作者:
Tianzong Li
Singularity analysis and fracture energy-release rate for composites: Piecewise homogeneous-anisotropic materials
- DOI:
10.1016/j.cma.2005.11.009 - 发表时间:
2006-07-15 - 期刊:
- 影响因子:
- 作者:
Loc Vu-Quoc;Van-Xuan Tran - 通讯作者:
Van-Xuan Tran
Loc Vu-Quoc的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Loc Vu-Quoc', 18)}}的其他基金
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant