Developing and Understanding Methods for Nonlinear Optimization

开发和理解非线性优化方法

基本信息

  • 批准号:
    8920519
  • 负责人:
  • 金额:
    $ 11.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1990
  • 资助国家:
    美国
  • 起止时间:
    1990-04-15 至 1992-03-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to research in unconstrained and constrained optimization. The project has five parts: First, tensor methods will be developed for constrained optimization and for large, sparse systems of nonlinear equations. These methods show great promise of yielding general purpose algorithms that are highly efficient on nonsingular and singular problems. Second, trust region methods will be developed for nonlinearly inequality and equality constrained optimization problems that have satisfactory local and global convergence theory even in the presence of linearly dependent constraint gradients, and perform efficiently and robustly in practice. Third, a thorough analysis will be performed of several secant methods for nonlinearly constrained optimization, with the goal of guaranteeing local and superlinear convergence with an arbitrary positive definite initial Hessian approximation. In particular, methods will be investigated that utilize the full Hessian of the Lagrangian, including some new, promising augmented Lagrangian methods that will also be investigated computationally. Fourth, algorithms will be developed to solve the implicit nonlinear least squares problem, an optimization problem that arises in curve fitting or in data fitting when there is no dependent variable. This problem results in a nonlinear equality constrained optimization problem which is expected to be solved by trust region methods. Fifth, some parallel and sequential methods will be investigated for global optimization. These are stochastic algorithms which adaptively partition the feasible region, and lead to improvements in both parallel and sequential computation.
本项目致力于无约束优化和约束优化的研究。该项目有五个部分:首先,张量方法将被开发用于约束优化和大型稀疏非线性方程组。这些方法显示出很有希望产生对非奇异和奇异问题高效的通用算法。其次,发展了求解非线性不等式和等式约束最优化问题的信赖域方法,这些问题即使在线性相关约束梯度的情况下也具有令人满意的局部和全局收敛理论,并且在实际应用中具有高效和健壮的性能。第三,对非线性约束最优化的几种割线方法进行了深入的分析,目标是在任意正定的初始Hessian逼近下保证局部和超线性收敛。特别是,将研究利用拉格朗日的全部海森的方法,包括一些新的、有希望的增广拉格朗日方法,这些方法也将被计算研究。第四,将开发算法来解决隐式非线性最小二乘问题,这是在没有因变量的情况下在曲线拟合或数据拟合中出现的优化问题。该问题归结为一个非线性等式约束优化问题,有望用信赖域方法求解。第五,对全局优化的并行和顺序方法进行了研究。这些都是随机算法,它们自适应地划分可行域,并导致并行和顺序计算的改进。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Byrd其他文献

Global Optimization For Molecular Clusters Using A New Smoothing Approach
  • DOI:
    10.1023/a:1008387208683
  • 发表时间:
    2000-02-01
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Chung-Shang Shao;Richard Byrd;Elizabeth Eskow;Robert B. Schnabel
  • 通讯作者:
    Robert B. Schnabel
Comparison of Manual and Automated SurePath<sup>™</sup> Pre-analytic Preparation for Roche cobas<sup>®</sup> 4800 HPV Testing
  • DOI:
    10.1016/j.jasc.2017.06.071
  • 发表时间:
    2017-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Richard Byrd;Mary Tuttle;Brenda Berry
  • 通讯作者:
    Brenda Berry

Richard Byrd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Byrd', 18)}}的其他基金

Collaborative Research: Algorithms for Large-scale Stochastic and Nonlinear Optimization
合作研究:大规模随机和非线性优化算法
  • 批准号:
    1620070
  • 财政年份:
    2016
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Methods for Stochastic and Nonlinear Optimization
协作研究:随机和非线性优化方法
  • 批准号:
    1216554
  • 财政年份:
    2012
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigation and Development of Active Set Prediction Techniques for Nonlinear Optimization
合作研究:非线性优化活动集预测技术的研究与发展
  • 批准号:
    0728190
  • 财政年份:
    2007
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
ITR: A Global Optimization Package for Protein Structure Prediction
ITR:蛋白质结构预测的全局优化包
  • 批准号:
    0205170
  • 财政年份:
    2002
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
ITR: Collaborative Research: Optimization of Systems Governed by Partial Differential Equations
ITR:协作研究:偏微分方程控制系统的优化
  • 批准号:
    0219190
  • 财政年份:
    2002
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant
U.S.-France (INRIA) Cooperative Research: Interior Point Methods for Optimal Control and Shape Optimization
美法(INRIA)合作研究:最优控制和形状优化的内点方法
  • 批准号:
    9726199
  • 财政年份:
    1998
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
Developing and Understanding Methods for Nonlinear Optimization
开发和理解非线性优化方法
  • 批准号:
    9101795
  • 财政年份:
    1991
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant
New Methods for Nonlinear Optimization
非线性优化的新方法
  • 批准号:
    8702403
  • 财政年份:
    1987
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
Trust Region Methods for Mininization (Computer Research)
信任域最小化方法(计算机研究)
  • 批准号:
    8403483
  • 财政年份:
    1984
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant
Trust Region Methods For Minimization
信任域最小化方法
  • 批准号:
    8115475
  • 财政年份:
    1981
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developing Statistical Tools and Visualization Methods for Understanding Heterogeneity in Distributed Networks: Applications to COVID-19 and Diabetes
开发统计工具和可视化方法来理解分布式网络中的异质性:在 COVID-19 和糖尿病中的应用
  • 批准号:
    468555
  • 财政年份:
    2022
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Operating Grants
Understanding What Matters: Developing effective participatory methods from the research into what matters to children living in kinship care.
了解重要的事情:通过研究对生活在亲属照料中的儿童来说重要的事情,制定有效的参与方法。
  • 批准号:
    ES/X006964/1
  • 财政年份:
    2022
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Fellowship
Toward improved understanding of sex differences in drug response: developing gene and pathway-based informatics methods to examine sex-differential genetic effects
提高对药物反应中性别差异的理解:开发基于基因和通路的信息学方法来检查性别差异遗传效应
  • 批准号:
    10181072
  • 财政年份:
    2019
  • 资助金额:
    $ 11.97万
  • 项目类别:
Studying the genomic and ecological properties of pathogen Clostridium difficile for the purposes of better understanding its transmission and developing novel methods of treatment
研究病原体艰难梭菌的基因组和生态特性,以便更好地了解其传播并开发新的治疗方法
  • 批准号:
    471514-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Studying the genomic and ecological properties of pathogen Clostridium difficile for the purposes of better understanding its transmission and developing novel methods of treatment
研究病原体艰难梭菌的基因组和生态特性,以便更好地了解其传播并开发新的治疗方法
  • 批准号:
    471514-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Developing methods for understanding mechanism in complex interventions
开发理解复杂干预机制的方法
  • 批准号:
    MR/K006185/1
  • 财政年份:
    2013
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Research Grant
BE/MUSES: Understanding Biocomplexity: Developing Methods of Defining Sustainable Uses for Agricultural Products
BE/MUSES:了解生物复杂性:开发定义农产品可持续用途的方法
  • 批准号:
    0407854
  • 财政年份:
    2003
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
BE/MUSES: Understanding Biocomplexity: Developing Methods of Defining Sustainable Uses for Agricultural Products
BE/MUSES:了解生物复杂性:开发定义农产品可持续用途的方法
  • 批准号:
    0224006
  • 财政年份:
    2002
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Standard Grant
Developing and Understanding Methods for Nonlinear Optimization
开发和理解非线性优化方法
  • 批准号:
    9101795
  • 财政年份:
    1991
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant
Toward Developing Methods For Understanding Public ResponsesTo Risky Technologies
制定方法来了解公众对风险技术的反应
  • 批准号:
    8108638
  • 财政年份:
    1981
  • 资助金额:
    $ 11.97万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了