Conditions for Asymptotic Stability in OLG and Growth Models
OLG 和增长模型中渐近稳定性的条件
基本信息
- 批准号:9012166
- 负责人:
- 金额:$ 4.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1990
- 资助国家:美国
- 起止时间:1990-08-15 至 1992-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Economists have long used overlapping generations and neoclassical growth models to explore important empirical and theoretical issues in public finance, development, international trade, savings and monetary policy. Recently, some researchers have attacked the way these models characterize the long run tendency of the economy. This project will study the mathematical equations which economists use to codify and apply these models and investigate the relationship between the empirically determined parameters and the corresponding long run properties of the models. Since the equations which codify the assumptions of the models can lead to bizarre behavior when these models are used in practice, the models could give misleading forecasts of the behavior of the economy. By applying state of the art computer programming techniques, formulae for characterizing the plausible ranges of parameters of interest will be developed. The concept of determinacy developed by Laitner and Anderson- Moore will be applied to identify fixed-point and limit cycles which possess stability properties that imply unique convergent trajectories from nearby points. The project will focus on discrete time models. Analytic expressions for specific utility and production functions will be developed when general formulae are unattainable. The asymptotic stability of these models will be investigated for empirically relevant ranges of model parameters in order to characterize the plausibility and relevance of the potentially complex asymptotic behavior when confronting real world data. The project will begin an investigation of the global convergence properties of these models with the objective of developing "higher order" turnpike theorems characterizing conditions guaranteeing convergence to limit cycles of a given periodicity.
长期以来,经济学家一直使用世代重叠的方法, 新古典增长模型,探讨重要的经验和 公共财政理论问题,发展,国际 贸易、储蓄和货币政策。最近,一些研究人员 已经攻击了这些模型描述长期的方式 经济的趋势。本项目将研究 经济学家用来编纂和应用的数学方程 这些模型并研究它们之间的关系 经验确定的参数和相应的长期 模型的属性。因为编码的方程 模型的假设可能会导致奇怪的行为, 模型在实践中使用,模型可能会产生误导 对经济行为的预测。通过应用状态 计算机编程技术, 表征感兴趣的参数的合理范围 将被开发。 由莱特纳和安德森提出的确定性概念- 摩尔将被应用于确定不动点和极限环 它具有稳定的性质,意味着唯一的收敛 从附近的点的轨迹。该项目将侧重于 离散时间模型特定效用的解析表达式 和生产函数将开发时,一般公式 是无法实现的。这些模型的渐近稳定性将 研究模型的经验相关范围 参数,以表征可扩展性, 潜在复杂渐近行为的相关性, 面对真实的世界数据。 该项目将开始一个 研究这些算法的全局收敛性 以发展“高阶”收费公路为目标的模式 刻画保证收敛到的条件的定理 给定周期的极限环。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gary Anderson其他文献
Breast cancer prevention with Morinda citrifolia (noni) at the initiation stage
在起始阶段用诺丽果预防乳腺癌
- DOI:
10.31989/ffhd.v3i6.53 - 发表时间:
2013 - 期刊:
- 影响因子:1
- 作者:
Mian;Lin Peng;Gary Anderson;D. Nowicki - 通讯作者:
D. Nowicki
Measuring Innovation and Innovation Activities Using Non-Survey Data Sources
使用非调查数据源衡量创新和创新活动
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Keller;Gizem Korkmaz;Bianica Pires;S. Shipp;Gary Anderson;K. Hamrick;Carol Robbins - 通讯作者:
Carol Robbins
Cultivation of emScenedesmus dimorphus/em with air contaminants from a pig confinement building
利用猪舍空气污染物培养二形栅藻
- DOI:
10.1016/j.jenvman.2022.115129 - 发表时间:
2022-07-15 - 期刊:
- 影响因子:8.400
- 作者:
Seyit Uguz;Gary Anderson;Xufei Yang;Ercan Simsek;Augustina Osabutey - 通讯作者:
Augustina Osabutey
The Child Adoption Marketplace: Parental Preferences and Adoption Outcomes
儿童收养市场:父母偏好和收养结果
- DOI:
10.2139/ssrn.1974402 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
M. Skidmore;Gary Anderson;Mark E. Eiswerth - 通讯作者:
Mark E. Eiswerth
A multigeneration reproductive and developmental safety evaluation of authentic Morinda citrifolia (noni) juice.
对正宗诺丽果汁的多代生殖和发育安全性评估。
- DOI:
10.2131/jts.36.81 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Mian;Jenae Hurn;Lin Peng;D. Nowicki;Gary Anderson - 通讯作者:
Gary Anderson
Gary Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gary Anderson', 18)}}的其他基金
Physiology Teaching Laboratory Improvement Project
生理学教学实验室改进项目
- 批准号:
8853046 - 财政年份:1988
- 资助金额:
$ 4.29万 - 项目类别:
Standard Grant
Multiplex and Multichannel Data Acquisition Instrumentation for Advanced Analytical Chemistry
用于高级分析化学的多重和多通道数据采集仪器
- 批准号:
8551611 - 财政年份:1985
- 资助金额:
$ 4.29万 - 项目类别:
Standard Grant
相似海外基金
CAREER: An Approach to Pricing, Hedging, Stability, and Asymptotic Analysis in Financial Markets
职业:金融市场的定价、对冲、稳定性和渐近分析方法
- 批准号:
1848339 - 财政年份:2019
- 资助金额:
$ 4.29万 - 项目类别:
Continuing Grant
Asymptotic and numerical approaches to three-dimensional flows and their stability
三维流动的渐近数值方法及其稳定性
- 批准号:
2091877 - 财政年份:2018
- 资助金额:
$ 4.29万 - 项目类别:
Studentship
Stability and instability of Einstein manifolds with prescribed asymptotic geometry
具有规定渐近几何的爱因斯坦流形的稳定性和不稳定性
- 批准号:
339994672 - 财政年份:2017
- 资助金额:
$ 4.29万 - 项目类别:
Priority Programmes
Asymptotic Suction Boundary Layer: Alternative Linear and Weakly Non-Modal Stability Modes - a New Route to Large-Scale Turbulent Structures
渐进吸力边界层:替代线性和弱非模态稳定模式 - 大规模湍流结构的新途径
- 批准号:
316376675 - 财政年份:2016
- 资助金额:
$ 4.29万 - 项目类别:
Priority Programmes
New problems in continuum mechanics: asymptotic eigenvalue distributions, rigorous numerical stability analysis and weakly nonlinear asymptotics in periodic thin film flow
连续介质力学的新问题:周期性薄膜流中的渐近特征值分布、严格的数值稳定性分析和弱非线性渐近
- 批准号:
1400555 - 财政年份:2014
- 资助金额:
$ 4.29万 - 项目类别:
Continuing Grant
Nonparametric classification, tuning parameter selection, and asymptotic stability for high-dimensional data
高维数据的非参数分类、调整参数选择和渐近稳定性
- 批准号:
1308566 - 财政年份:2013
- 资助金额:
$ 4.29万 - 项目类别:
Continuing Grant
Theory of global asymptotic stability on the basic reproduction number of epidemic mathematical models
流行病数学模型基本再生数的全局渐近稳定性理论
- 批准号:
24540219 - 财政年份:2012
- 资助金额:
$ 4.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International Research Fellowship Program: Hadamard Wellposedness and Asymptotic Stability of Finite Energy Solutions for a Structural Acoustic Interaction Modeled by Nonlinear
国际研究奖学金计划:非线性结构声相互作用建模的有限能量解的哈达玛适定性和渐近稳定性
- 批准号:
0802187 - 财政年份:2009
- 资助金额:
$ 4.29万 - 项目类别:
Fellowship Award
Asymptotic stability of trapped solitons of nonlinear Schrodinger equations with potential
势非线性薛定谔方程陷孤子的渐近稳定性
- 批准号:
342962-2007 - 财政年份:2008
- 资助金额:
$ 4.29万 - 项目类别:
Postdoctoral Fellowships
Asymptotic stability of trapped solitons of nonlinear Schrodinger equations with potential
势非线性薛定谔方程陷孤子的渐近稳定性
- 批准号:
342962-2007 - 财政年份:2007
- 资助金额:
$ 4.29万 - 项目类别:
Postdoctoral Fellowships














{{item.name}}会员




