Symbolic-Numeric Methods and Data Visualization Strategies for Scientific Concurrent Computation
科学并发计算的符号数值方法和数据可视化策略
基本信息
- 批准号:9110424
- 负责人:
- 金额:$ 53.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-09-01 至 1995-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research project "Scientific User Interface for Parallel Computing" and is concerned with the design and implementation of user interface systems that allow engineers and scientists to prototype differential equation based computer models without the need to undertake computer programming, per se. A system, called SCENE (Scientific Computation Environment for Numerical Experimentation) has been developed which allows its users to enter models in mathematical form, effect interactive solution to those models, examine the output in a variety of graphical formats, and invoke "computational steering" to alter the models during run-time. SCENE makes use of a variety of disciplines, including Computational Engineering, Symbolic - Numeric Computation, and Computational Mathematics. This research will extend SCENE to a wider class of problems, larger problems, and problems which normally required a mix of numeric and symbolic procedures. Following is a overview of the research extension: Computational Engineering: Interactive user specification of filter functions (local or non-local) for SCENE graphics and visualization tools Object-oriented data management with large data sets distributed over numerous resources and with concurrent access strategies Symbolic - Numeric Computation: Alternate and more efficient tools for the SCENE ordinary and partial differential equation solver Symbolic domain algebra for private versus shared memory allocation in parallel computations Domain algebra methods for use in SCENE's automatic meshing sub-system Computational Mathematics: Incorporate into SCENE symbolic computation and mathematics expert system for singular perturbation problems Generalized Flux Balance methods for parallel partial differential equation solver Education and Human Resources Development: Implement a summer high school science/math teacher - student program to complement our present undergraduate participation program
“并行计算的科学用户界面”研究项目涉及用户界面系统的设计和实现,使工程师和科学家能够建立原型基于微分方程的计算机模型,而不需要进行计算机编程。一个名为SCENE(数值实验科学计算环境)的系统已经开发出来,它允许用户以数学形式输入模型,对这些模型执行交互式解决方案,以各种图形格式检查输出,并调用“计算导向”来在运行时更改模型。SCENE利用了多种学科,包括计算工程、符号-数值计算和计算数学。这项研究将SCENE扩展到更广泛的问题类别,更大的问题,以及通常需要混合数字和符号过程的问题。以下是研究扩展的概述:计算工程:用于场景图形和可视化工具的过滤功能(本地或非本地)的交互式用户规范面向对象的数据管理分布在众多资源上的大型数据集和并发访问策略。用于SCENE的常微分方程和偏微分方程求解器的替代和更有效的工具用于SCENE自动网格划分的领域代数方法计算数学:将广义通量平衡问题的符号计算和数学专家系统集成到SCENE中平行偏微分方程的求解方法实施暑期高中科学/数学师生计划,以补充我们目前的本科参与计划
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Peskin其他文献
Richard Peskin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Peskin', 18)}}的其他基金
Scientific User Interfaces for Parallel Computing (Women, Minority and Handicapped Engineering Research Asistant Supplement)
并行计算的科学用户界面(女性、少数民族和残疾人工程研究助理补充材料)
- 批准号:
8814937 - 财政年份:1989
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
Turbulence and Turbulent Dispersion For a Two-Dimensional Simulated Atmospheric Model
二维模拟大气模型的湍流和湍流色散
- 批准号:
8019887 - 财政年份:1980
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
Turbulence and Turbulent Dispersion For a Two-Dimensional Simulated Baroclinic Atmospheric Model
二维模拟斜压大气模型的湍流和湍流扩散
- 批准号:
7901694 - 财政年份:1979
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Two-Point Diffusion For Two-Dimensional Turbulence
二维湍流的两点扩散
- 批准号:
7618899 - 财政年份:1976
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Investigation of Turbulent Diffusion in the Urban Atmospheric Boundary Layer
城市大气边界层湍流扩散研究
- 批准号:
7405295 - 财政年份:1974
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
Turbulence and Turbulent Diffusion in Stratified Flow
层流中的湍流和湍流扩散
- 批准号:
7201428 - 财政年份:1972
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
相似海外基金
Computer exploration of nonlinear models using symbolic-numeric methods
使用符号数值方法对非线性模型进行计算机探索
- 批准号:
498052-2016 - 财政年份:2016
- 资助金额:
$ 53.28万 - 项目类别:
University Undergraduate Student Research Awards
AF: Small: Efficient Exact/Certified Symbolic Computation By Hybrid Symbolic-Numeric and Parallel Methods
AF:小型:通过混合符号数字和并行方法进行高效精确/认证符号计算
- 批准号:
1115772 - 财政年份:2011
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
CAREER: Solving Over-Constrained Systems of Non-Linear Equations by Symbolic-Numeric Methods
职业:用符号数值方法求解非线性方程组的过约束系统
- 批准号:
0347506 - 财政年份:2004
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Algabraic-numeric methods for differencial systems
微分系统的代数数值方法
- 批准号:
3070-1997 - 财政年份:2000
- 资助金额:
$ 53.28万 - 项目类别:
Discovery Grants Program - Individual
Algabraic-numeric methods for differencial systems
微分系统的代数数值方法
- 批准号:
3070-1997 - 财政年份:1999
- 资助金额:
$ 53.28万 - 项目类别:
Discovery Grants Program - Individual
Algabraic-numeric methods for differencial systems
微分系统的代数数值方法
- 批准号:
3070-1997 - 财政年份:1998
- 资助金额:
$ 53.28万 - 项目类别:
Discovery Grants Program - Individual
Algabraic-numeric methods for differencial systems
微分系统的代数数值方法
- 批准号:
3070-1997 - 财政年份:1997
- 资助金额:
$ 53.28万 - 项目类别:
Discovery Grants Program - Individual
Numeric and Symbolic Methods for Polynomial Manipulation
多项式运算的数值和符号方法
- 批准号:
9319957 - 财政年份:1994
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant
Numeric Methods for Nonlinear Optimization
非线性优化的数值方法
- 批准号:
8902096 - 财政年份:1990
- 资助金额:
$ 53.28万 - 项目类别:
Standard Grant
Automated Methods for Runtime Performance Optimization for Sparse and Irregular Numeric Applications
稀疏和不规则数值应用程序运行时性能优化的自动化方法
- 批准号:
8819374 - 财政年份:1989
- 资助金额:
$ 53.28万 - 项目类别:
Continuing Grant