Research Initiation Award: System Identification for ProcessControl: Control Relevant Identification

研究启动奖:过程控制系统识别:控制相关识别

基本信息

  • 批准号:
    9110528
  • 负责人:
  • 金额:
    $ 6.32万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1994-02-28
  • 项目状态:
    已结题

项目摘要

Process control systems enable plants to meet objectives such as maintaining product quality and minimizing energy consumption, which in turn maximize the plant's profitability and rate-of-return or investment. Because they enable a rapid response to change, process control systems play a vital part in a company's ability to remain profitable in an uncertain economic climate. The first step in the design of an advanced control system is to build a model that represents the dynamics of the plant. Most plants are too complex or the underlying processes too poorly understood to be adequately modeled using first principles. The most reasonable way to obtain reliable dynamic models is from data generated through well designed experiments. In the petrochemical and refining industries, black-box models obtained from experiments are by far the most common means of obtaining dynamic models. The task of obtaining dynamic models from data is referred to as system identification. Control-relevant system identification is motivated by the desire to increase the utility and acceptance of advanced identification concepts in the process industries. It takes into consideration the closed-loop control objectives and the skill level of the user. Control-relevant identification therefore offers the opportunity for the migration of advanced identification concepts to nonexpert users and for the development of computer-aided design tools for identification that can be used by practicing engineers with a B.S. level of education. The main objective of this project is to investigate the subject of control-relevant identification. The basis for the control-relevant approach is the relationship between the design variables of the identification problem and the performance objective of the control problem. To obtain this, bias and variance expressions in the frequency domain and representations of the control problem in terms of linear fractional transformations are used. This analysis leads to a systematic procedure for prefilter design that substantially improves the performance of prediction-error algorithms without demanding substantial increases in skill from the user. In addition, use of the Structured Singular Value leads to a model validation procedure for identified models that provides a clear picture of model limitations to achievable control performance. By providing the theoretical basis for improved computer-aided design tools, these results should make the application of advanced identification concepts a more commonplace practice by engineers in the process industries.
过程控制系统使工厂能够满足诸如保持产品质量和最小化能源消耗等目标,从而最大限度地提高工厂的盈利能力和投资回报率。由于过程控制系统能够对变化做出快速反应,因此在不确定的经济环境中,过程控制系统对公司保持盈利的能力起着至关重要的作用。设计先进控制系统的第一步是建立一个代表工厂动态的模型。大多数植物太过复杂,或者对其潜在的过程了解得太少,无法用第一性原理充分地建模。获得可靠的动态模型的最合理方法是通过精心设计的实验产生的数据。在石油化工和炼油工业中,从实验中得到的黑箱模型是迄今为止获得动态模型的最常用手段。从数据中获取动态模型的任务称为系统识别。控制相关系统识别的动机是希望在过程工业中增加先进识别概念的效用和接受度。它考虑了闭环控制目标和用户的技术水平。因此,控制相关识别提供了向非专业用户迁移高级识别概念的机会,并为具有学士学位教育水平的实践工程师提供了用于识别的计算机辅助设计工具的开发。​这个项目的主要目的是调查控制相关识别的主题。控制相关方法的基础是识别问题的设计变量与控制问题的性能目标之间的关系。为了得到这一点,在频域中使用偏差和方差表达式以及用线性分数变换表示控制问题。这种分析导致预滤波器设计的系统程序,大大提高了预测误差算法的性能,而不需要用户大幅度提高技能。此外,结构化奇异值的使用导致了对已识别模型的模型验证过程,该过程为可实现的控制性能提供了模型限制的清晰图像。通过为改进计算机辅助设计工具提供理论基础,这些结果应该使过程工业中工程师更普遍地应用先进的识别概念。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Rivera其他文献

Estimating last-mile deliveries and shopping travel emissions by 2050
估算 2050 年最后一英里配送和购物旅行排放量
CERN Supervision, Control and Data Acquisition System for Radiation and Environmental Protection
CERN辐射与环境保护监测、控制和数据采集系统
  • DOI:
    10.18429/jacow-pcapac2018-frcc3
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Ledeul;G. Segura;A. Savulescu;Daniel Rivera;B. Styczen
  • 通讯作者:
    B. Styczen
Spatio-Temporal Analysis of Freight Flows in Southern California
南加州货运流时空分析
A5252 - Conversion of duodenal switch to gastric bypass in patient with severe malnutrition and duodenal foreign body
  • DOI:
    10.1016/j.soard.2017.09.394
  • 发表时间:
    2017-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel Rivera;Vicente Muñoz;Adriana Ruano;Aida Elisa Pérez;Jose Luis García Galocha;Mikel Rojo;Andrés Sánchez-Pernaute;Antonio José Torres García
  • 通讯作者:
    Antonio José Torres García
Turning “on” and “off” nucleation and growth: Microwave assisted synthesis of CdS clusters and nanoparticles
  • DOI:
    10.1016/j.materresbull.2011.02.019
  • 发表时间:
    2012-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Edmy Ferrer;Sariann Nater;Daniel Rivera;Jean Marie Colon;Francisco Zayas;Miguel Gonzalez;Miguel E. Castro
  • 通讯作者:
    Miguel E. Castro

Daniel Rivera的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Rivera', 18)}}的其他基金

GOALI: Process Control Approaches to Supply Chain Management in Semiconductor Manufacturing
目标:半导体制造中供应链管理的过程控制方法
  • 批准号:
    0432439
  • 财政年份:
    2004
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant

相似海外基金

Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
  • 批准号:
    2300319
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
  • 批准号:
    2300405
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
  • 批准号:
    2200377
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
  • 批准号:
    2300321
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Redox Regulated Phosphorylation of BCAT by PKC
研究启动奖:PKC 氧化还原调节 BCAT 磷酸化
  • 批准号:
    2401097
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
  • 批准号:
    2300448
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
  • 批准号:
    2300454
  • 财政年份:
    2023
  • 资助金额:
    $ 6.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了