RIA: Combining Static and Dynamic Techniques for ExploitingLocality
RIA:结合静态和动态技术来利用局部性
基本信息
- 批准号:9110766
- 负责人:
- 金额:$ 6.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-08-01 至 1994-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The ultimate goal of this research is to develop sophisticated compilers for parallel machines. Memory latency is the focus of our research because it is the bottleneck that drives many design decisions in parallel architectures today. As systems become larger, it is increasingly difficult to have all memory close to all processors which can increase effective memory latency. Current solutions for reducing memory latency can be categorized as either dynamic or static. Dynamic solutions include multi-caches and shared virtual memory. These methods are based on the assumption that programs exhibit a high degree of locality and therefore, the cost of servicing a cache miss or a page fault can be amortized over many references that cache line or page. Current static solutions rely on the programmer to use memory efficiently. Three related research directions are proposed: a static solution to the problem of reducing effective memory latency that requires much less detailed knowledge of the machine by the programmer than present solutions, the combination of static and dynamic techniques for reducing memory latency, and static and dynamic methods for exploiting locality in recursively defined dynamic data structures.//
这项研究的最终目标是开发复杂的 并行机的编译器。 记忆延迟是我们的重点 因为它是推动许多设计的瓶颈 并行架构中的决策。 随着系统变得越来越大, 越来越难以让所有内存接近所有内存, 处理器,这可能会增加有效的内存延迟。 电流 减少内存延迟的解决方案可以分为以下两类 动态或静态。 动态解决方案包括多缓存和共享 虚拟内存 这些方法基于以下假设: 程序表现出高度的本地性,因此, 服务高速缓存未命中或页面错误可以分摊在许多时间上 引用该高速缓存行或页。 目前的静态解决方案依赖于 程序员有效地使用内存。 3相关研究 方向提出:一个静态的解决方案的问题 减少了有效的内存延迟, 程序员对机器的了解比目前的解决方案更好, 结合使用静态和动态技术来减少内存 延迟,以及利用局部性的静态和动态方法, 递归定义的动态数据结构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anne Rogers其他文献
Linear-time pointer-machine algorithms for least common ancestors, MST verification, and dominators
用于最不共同祖先、MST 验证和支配者的线性时间指针机算法
- DOI:
- 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
A. Buchsbaum;Haim Kaplan;Anne Rogers;J. Westbrook - 通讯作者:
J. Westbrook
In Search for Simplicity: A Self-Organizing Multi-Source Multicast Overlay
寻求简单性:自组织多源组播覆盖
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
M. Ripeanu;Adriana Iamnitchi;Ian T Foster;Anne Rogers - 通讯作者:
Anne Rogers
Modelling self-management pathways for people with diabetes in primary care
- DOI:
10.1186/s12875-015-0325-7 - 发表时间:
2015-09-02 - 期刊:
- 影响因子:2.600
- 作者:
Marion L. Penn;Anne P. Kennedy;Ivaylo I. Vassilev;Carolyn A. Chew-Graham;Joanne Protheroe;Anne Rogers;Tom Monks - 通讯作者:
Tom Monks
Diabetes self-management arrangements in Europe: a realist review to facilitate a project implemented in six countries
- DOI:
10.1186/1472-6963-14-453 - 发表时间:
2014-10-02 - 期刊:
- 影响因子:3.000
- 作者:
Antonis A Kousoulis;Evridiki Patelarou;Sue Shea;Christina Foss;Ingrid A Ruud Knutsen;Elka Todorova;Poli Roukova;Mari Carmen Portillo;María J Pumar-Méndez;Agurtzane Mujika;Anne Rogers;Ivaylo Vassilev;Manuel Serrano-Gil;Christos Lionis - 通讯作者:
Christos Lionis
Emerging trends in diabetes care practice and policy in The Netherlands: a key informants study
- DOI:
10.1186/1756-0500-7-693 - 发表时间:
2014-10-07 - 期刊:
- 影响因子:1.700
- 作者:
Michel Wensing;Jan Koetsenruijter;Anne Rogers;Maria Carmen Portillo;Jan van Lieshout - 通讯作者:
Jan van Lieshout
Anne Rogers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Combining eye-tracking and comparative judgments to identify proficiency differences for more effective language learning
结合眼动追踪和比较判断来识别熟练程度差异,以实现更有效的语言学习
- 批准号:
24K16140 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
STEM Teacher Effectiveness and Retention in High-Need Schools: Combining Equity & Ecological Frameworks
高需求学校的 STEM 教师效能和保留率:结合公平
- 批准号:
2345129 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Continuing Grant
Screening of environmentally friendly quantum-nanocrystals for energy and bioimaging applications by combining experiment and theory with machine learning
通过将实验和理论与机器学习相结合,筛选用于能源和生物成像应用的环保量子纳米晶体
- 批准号:
23K20272 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Collaborative R&D
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
- 批准号:
2335725 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
Combining structural biology and genetics to understand the function of a multi-gene family expanded in neglected human malaria parasites
结合结构生物学和遗传学来了解在被忽视的人类疟疾寄生虫中扩展的多基因家族的功能
- 批准号:
MR/Y012895/1 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Research Grant
Risk Assuring Future Structure Critical Systems: Combining 21st Century Science with Engineering Intuition - Renewal
确保未来结构关键系统的风险:将 21 世纪科学与工程直觉相结合 - Renewal
- 批准号:
MR/Y020235/1 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Fellowship
Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326904 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant
SBIR Phase I: Subseasonal Forecasting and Climate Risk Analytics Combining Physics and AI
SBIR 第一阶段:结合物理和人工智能的次季节预报和气候风险分析
- 批准号:
2335210 - 财政年份:2024
- 资助金额:
$ 6.25万 - 项目类别:
Standard Grant