RIA: Investigating the Exact Behavior of Helmholtz Equationin a Collinear Degenerate Four-Wave Mixing Arrangement
RIA:研究亥姆霍兹方程在共线简并四波混合排列中的精确行为
基本信息
- 批准号:9110907
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1991
- 资助国家:美国
- 起止时间:1991-07-15 至 1994-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The one-dimensional vectorial Helmholtz equation in nonlinear isotropic Kerr media is one of the most fundamental equations in nonlinear optics. By nature, this equation is capable of describing any one- dimensional optical field configuration in X(3) materials. As a result, it plays a central role in a number of very important and potentially useful nonlinear interactions, such as that of collinear degenerate four-wave mixing and that of optical bistability. However so far, the nonlinear Helmholtz equation in such configurations has been treated approximately. At this stage, it is by no means clear that these approximate techniques provide an accurate enough picture (or even the whole picture) associated with this problem. The exact solution of this problem is very important, first as a matter of principle, then as a way to test already existing theories and finally it may lead to new significant results. It is the purpose of this research proposal to investigate the exact behavior of Helmholtz equation in isotropic nonlinear Kerr media in a comprehensive program, that will involve both analytical and computer simulations. Specific goals in this Research Initiation Award are: a) to identify integrable cases of this equation using Hamiltonian techniques and in turn use them to test previously obtained approximate results. b) to discover totally new phenomena, such as spatial chaos in isotropic Kerr media that may have been overlooked by previous approximate procedures. c) to improve our understanding of wave propagation in X(3) media, which will in turn benefit other associated areas of research.
一维矢量亥姆霍兹方程 非线性各向同性Kerr介质是最重要的 非线性光学的基本方程 通过 自然界中,这个方程能够描述任何一个- X(3)维光场位形 材料. 因此,它在一个 一些非常重要和潜在有用的 非线性相互作用,如共线 简并四波混频和光学 双稳态 然而,到目前为止,非线性亥姆霍兹 方程在这样的配置已被处理 大概吧 现阶段, 这些近似技术提供了一种 足够准确的图片(甚至是整个图片) 与这个问题有关。 的精确解 这个问题很重要,首先是 原则,然后作为一种测试已经存在的 理论,并最终可能导致新的重大 结果 本研究提案的目的是 研究Helmholtz方程的精确性态 在各向同性非线性克尔介质中, 计划,这将涉及分析和 计算机模拟 该研究启动奖的具体目标是: a)确定该方程的可积情况,使用 哈密顿技术,并反过来使用它们来测试 以前得到的近似结果。 B)至 发现全新的现象,如空间混沌 在各向同性克尔介质中, 被以前的近似程序忽略了。 c)、 来提高我们对波在 X(3)媒体,这将反过来有利于其他相关的 研究领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Demetrios Christodoulides其他文献
Linear modulational stability analysis of Ginzburg–Landau dissipative vortices
- DOI:
10.1007/s11082-016-0514-1 - 发表时间:
2016-03-18 - 期刊:
- 影响因子:4.000
- 作者:
Vladimir Skarka;Najdan Aleksić;Wieslaw Krolikowski;Demetrios Christodoulides;Branislav Aleksić;Milivoj Belić - 通讯作者:
Milivoj Belić
Video-rate spontaneous Raman imaging
视频速率自发拉曼成像
- DOI:
10.1117/12.3003021 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lochlann C. Dunn;Haokun Luo;N. R. Subedi;Ramachandran Kasu;Armando McDonald;Demetrios Christodoulides;A. Vasdekis - 通讯作者:
A. Vasdekis
Demetrios Christodoulides的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Demetrios Christodoulides', 18)}}的其他基金
IDR: Collaborative Research: Novel Photonic Materials and Devices based on Non-Hermitian Optics
IDR:合作研究:基于非厄米光学的新型光子材料和器件
- 批准号:
1128520 - 财政年份:2011
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
"Incoherent Soliton Interactions in Protorefractive Media and Formation of Novel Photonic Devices"
“原折射介质中的非相干孤子相互作用和新型光子器件的形成”
- 批准号:
9902639 - 财政年份:1999
- 资助金额:
$ 6万 - 项目类别:
Fellowship Award
相似海外基金
Investigating bioengineering approaches to produce immuno-modulatory mesenchymal stromal cells and their extracellular vesicle
研究生产免疫调节间充质基质细胞及其细胞外囊泡的生物工程方法
- 批准号:
2608627 - 财政年份:2025
- 资助金额:
$ 6万 - 项目类别:
Studentship
Collaborative Research: Investigating Southern Ocean Sea Surface Temperatures and Freshening during the Late Pliocene and Pleistocene along the Antarctic Margin
合作研究:调查上新世晚期和更新世沿南极边缘的南大洋海面温度和新鲜度
- 批准号:
2313120 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
CAREER: Investigating Biogeographic Hypotheses and Drivers of Diversification in Neotropical Harvestmen (Opiliones: Laniatores) Using Ultraconserved Elements
职业:利用超保守元素研究新热带收获者(Opiliones:Laniatores)多样化的生物地理学假设和驱动因素
- 批准号:
2337605 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
Investigating Multi-Scale Dynamical Processes Amplifying Storm Surges
研究放大风暴潮的多尺度动力学过程
- 批准号:
2342516 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: Investigating Hyporheic Zone Reaction Enhancement by Bioclogging Across Scales
合作研究:研究跨尺度生物堵塞增强潜流区反应
- 批准号:
2345366 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Continuing Grant
RUI: Investigating the Covalency of Intermolecular Interactions and its Effect on the Properties of Supramolecular Complexes.
RUI:研究分子间相互作用的共价性及其对超分子复合物性质的影响。
- 批准号:
2404011 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Investigating a Novel Circadian Time-Keeping Mechanism Revealed by Environmental Manipulation
美国国家科学基金会生物学博士后奖学金:研究环境操纵揭示的新型昼夜节律机制
- 批准号:
2305609 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Fellowship Award
NSF Postdoctoral Fellowship in Biology: Investigating the role of thermal stress response in facilitating adaptation in camel spiders
美国国家科学基金会生物学博士后奖学金:研究热应激反应在促进骆驼蜘蛛适应中的作用
- 批准号:
2305969 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Fellowship Award
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating the Role of International Higher Education in Japan-UK Relations: An Analysis of the RENKEI University Network Partnership
调查国际高等教育在日英关系中的作用:仁庆大学网络伙伴关系分析
- 批准号:
24K16704 - 财政年份:2024
- 资助金额:
$ 6万 - 项目类别:
Grant-in-Aid for Early-Career Scientists