Research Initiation Award: Parameter Estimation in Adaptive Control

研究启动奖:自适应控制中的参数估计

基本信息

  • 批准号:
    9111346
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1994-02-28
  • 项目状态:
    已结题

项目摘要

The objective of the research is to analyze and quantify the design of estimators with intended application in adaptive control systems. Interest is mainly focused on certain aspects of closed-loop performance in the presence of uncertainty and, particularly, on preventing the closed loop signals from reaching excessively large magnitude for short time periods, commonly known as "burst" phenomena. Such undesirable phenomena are of great practical significance, especially in cases of poorly excited systems where the true nonlinear nature of adaptive controllers is highly pronounced. The plan is to investigate the properties of estimators whose design is performed via signal energy as well as amplitude criteria. Although the minimization of the maximum amplitude of the estimation error typically leads to a linear programming problem of increasing dimensionality, recursive suboptimal solutions will be considered in order to alleviate this problem. The preliminary investigations indicate that these techniques allow for amplitude considerations in the design of adaptive systems and for a more efficient use of the available measurements. Particular emphasis will be given to the extension of this approach to time-varying systems and the assessment of the associated performance trade-offs. It is expected that the results of the research will make a significant contribution in the design of practically acceptable adaptive controllers.
研究的目的是分析和量化在自适应控制系统中预期应用的估计器的设计。兴趣主要集中在存在不确定性时闭环性能的某些方面,特别是防止闭环信号在短时间内达到过大的幅度,通常称为“突发”现象。这种不良现象具有重要的实际意义,特别是在弱激励系统中,自适应控制器的真正非线性性质非常明显。该计划是研究估计器的性质,其设计是通过信号能量和幅度标准来执行的。虽然估计误差最大幅度的最小化通常会导致一个增加维数的线性规划问题,但为了缓解这个问题,将考虑递归次优解。初步研究表明,这些技术允许在设计自适应系统时考虑幅度,并更有效地利用现有的测量值。将特别强调将这一方法扩展到时变系统和评估有关的性能权衡。期望研究结果对设计实际可接受的自适应控制器有重大贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstantinos Tsakalis其他文献

A Control-Theoretic Approach for Efficient Design of Filters in DAC and Digital Audio Amplifiers
  • DOI:
    10.1007/s00034-010-9231-3
  • 发表时间:
    2010-11-17
  • 期刊:
  • 影响因子:
    2.000
  • 作者:
    Konstantinos Tsakalis;Nikolaos Vlassopoulos;George Lentaris;Dionysios Reisis
  • 通讯作者:
    Dionysios Reisis

Konstantinos Tsakalis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Konstantinos Tsakalis', 18)}}的其他基金

I-Corps: Epileptic Seizure Detection System
I-Corps:癫痫发作检测系统
  • 批准号:
    1747974
  • 财政年份:
    2017
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Epileptogenic Focus Localization and Closed-loop Control of Brain Dynamics in Epilepsy
癫痫病灶定位和脑动力学闭环控制
  • 批准号:
    1102390
  • 财政年份:
    2011
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Cyber Systems: Closed-Loop Control of Brain Dynamics in Epilepsy
网络系统:癫痫大脑动力学的闭环控制
  • 批准号:
    0601740
  • 财政年份:
    2006
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似海外基金

Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
  • 批准号:
    2300319
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
  • 批准号:
    2247163
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
  • 批准号:
    2300405
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
  • 批准号:
    2300445
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
  • 批准号:
    2344742
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
  • 批准号:
    2200377
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
  • 批准号:
    2300321
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
  • 批准号:
    2300448
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
  • 批准号:
    2300454
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
  • 批准号:
    2300475
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了