Learning Probabilistic Networks from Databases

从数据库学习概率网络

基本信息

  • 批准号:
    9111590
  • 负责人:
  • 金额:
    $ 10.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-09-01 至 1994-02-28
  • 项目状态:
    已结题

项目摘要

This research investigates Bayesian methods for constructing probabilistic networks from databases. Its main focus is on constructing Bayesian belief networks. Primary goals are to (1) develop methods for calculating the probability of a Bayesian belief-network structure given a database of cases, (2) identify the most probable belief-network structure given a database of cases, and (3) perform probabilistic inference by taking a weighted average over the inferences of multiple belief networks. Potential applications include computer-assisted hypothesis testing, automated scientific discovery, and automated construction of probabilistic expert systems. Methods will be explored for intergrateing prior knowledge with data, handling missing data, and discovering hidden (latent) variables. Of particular concern is the development of computationally efficient algorithms. The methods developed will be empirically evaluated using databases from several domains. //
本研究探讨贝叶斯方法构建 数据库中的概率网络。 其主要重点是 构建贝叶斯信念网络。 主要目标是(1) 开发计算贝叶斯概率的方法, 给出一个置信网络结构的案例数据库,(2)识别 最可能的信念网络结构,给定数据库, 的情况下,和(3)执行概率推理,通过采取 对多个信念网络的推断进行加权平均。 潜在的应用包括计算机辅助假设 测试,自动化科学发现, 概率专家系统的构建。 方法将 探索将先验知识与数据、处理 丢失数据和发现隐藏(潜在)变量。 的 特别值得关注的是计算的发展 高效算法 开发的方法将是经验性的 使用来自多个领域的数据库进行评估。 //

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregory Cooper其他文献

Thialfi: a client notification service for internet-scale applications
Thialfi:适用于互联网规模应用程序的客户端通知服务
LUMEN-APPOSING METAL STENT IN THE MANAGEMENT OF BENIGN GASTROINTESTINAL STRICTURES: A SYSTEMATIC REVIEW AND META-ANALYSIS
腔内贴壁金属支架在良性胃肠道狭窄治疗中的应用:系统评价和荟萃分析
  • DOI:
    10.1016/j.gie.2023.04.1842
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    7.500
  • 作者:
    Rami Musallam;Wael Al-Yaman;Azizullah Beran;Babu Mohan;Motib Alabdulwahhab;Emad Mansoor;Naresh Gunaratnam;Gregory Cooper;Roberto Simons-Linares;Amitabh Chak;Prabhleen Chahal;Mohannad Abousaleh
  • 通讯作者:
    Mohannad Abousaleh
eP144: Long-read genome sequencing secondary processing pipelines provide variant call accuracy that exceeds current clinical standards for short-read genome sequencing
  • DOI:
    10.1016/j.gim.2022.01.180
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    James Holt;Lori Handley;James Lawlor;Susan Hiatt;Gregory Cooper;Jane Grimwood;Ghunwa Nakouzi
  • 通讯作者:
    Ghunwa Nakouzi
eP494: Integration of genomics into primary care via the Alabama Genomic Health Initiative
  • DOI:
    10.1016/j.gim.2022.01.526
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Bruce Korf;Devin Absher;Irfan Asif;Lori Bateman;Gregory Barsh;Kevin Bowling;Gregory Cooper;Brittney Davis;Kelly East;Candice Finnila;Blake Goff;Melissa Kelly;Whitley Kelley;Donald Latner;James Lawlor;Nita Limdi;Thomas May;Matthew Might;Irene Moss;Mariko Nakano
  • 通讯作者:
    Mariko Nakano
P134 PREVALENCE OF LACTOSE INTOLERANCE IN INFLAMMATORY BOWEL DISEASE IN THE UNITED STATES BETWEEN 2014 AND 2019: A POPULATION-BASED STUDY
  • DOI:
    10.1053/j.gastro.2019.11.126
  • 发表时间:
    2020-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Emad Mansoor;Mohannad Abou-Saleh;Muhammad Talal Sarmini;Vijit Chouhan;Miguel Regueiro;Jeffry Katz;Gregory Cooper
  • 通讯作者:
    Gregory Cooper

Gregory Cooper的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregory Cooper', 18)}}的其他基金

BD Spokes: SPOKE: NORTHEAST: Collaborative Research: Integration of Environmental Factors and Causal Reasoning Approaches for Large-Scale Observational Health Research
BD 发言:发言:东北:合作研究:大规模观察健康研究的环境因素和因果推理方法的整合
  • 批准号:
    1636786
  • 财政年份:
    2017
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
ITR: Bayesian Modeling for Biosurveillance
ITR:生物监测贝叶斯建模
  • 批准号:
    0325581
  • 财政年份:
    2003
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Causal Discovery from a Mixture of Experimental and Observational Data
从实验和观察数据的混合中发现因果关系
  • 批准号:
    9812021
  • 财政年份:
    1998
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Learning Bayesian Networks that Contain Both Discrete and Continuous Variables
学习包含离散变量和连续变量的贝叶斯网络
  • 批准号:
    9509792
  • 财政年份:
    1995
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Improving the Cost Effectiveness of Health Care Through Machine Learning Applied to Large Clinical Databases
通过应用于大型临床数据库的机器学习提高医疗保健的成本效益
  • 批准号:
    9315428
  • 财政年份:
    1994
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311296
  • 财政年份:
    2023
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Continuing Grant
Multi-hazard probabilistic risk assessment of bridge networks in cold regions
寒冷地区桥网多灾害概率风险评估
  • 批准号:
    RGPIN-2021-03341
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Grants Program - Individual
Collaboration Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133851
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133822
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133861
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Probabilistic, Geometric, and Topological Analysis of Neural Networks, From Theory to Applications
合作研究:神经网络的概率、几何和拓扑分析,从理论到应用
  • 批准号:
    2133806
  • 财政年份:
    2022
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
Multi-hazard probabilistic risk assessment of bridge networks in cold regions
寒冷地区桥网多灾害概率风险评估
  • 批准号:
    RGPIN-2021-03341
  • 财政年份:
    2021
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-hazard probabilistic risk assessment of bridge networks in cold regions
寒冷地区桥网多灾害概率风险评估
  • 批准号:
    DGECR-2021-00335
  • 财政年份:
    2021
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Discovery Launch Supplement
RI: Small: Embracing Deep Neural Networks into Probabilistic Answer Set Programming
RI:小:将深度神经网络融入概率答案集编程
  • 批准号:
    2006747
  • 财政年份:
    2020
  • 资助金额:
    $ 10.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了