Polarization Methods in Machine and Computer Vision

机器和计算机视觉中的偏振方法

基本信息

  • 批准号:
    9111973
  • 负责人:
  • 金额:
    $ 5.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1991
  • 资助国家:
    美国
  • 起止时间:
    1991-07-01 至 1993-06-30
  • 项目状态:
    已结题

项目摘要

This project extends the unique capabilities of polarization- based visual sensing both in low-level machine vision and "higher-level" computer vision. The doctoral thesis written by the principle investigator has opened up a new subarea of vision research utilizing reflected polarization analysis as a new sensory medium for object feature extraction which has been demonstrated to have key advantages over existing intensity and color-based techniques for some important image understanding problems. Utilizing the fundamental foundations for these methods the research explores the development of a variety of polarization-based techniques for inspection processes in machine vision, and object recognition in computer vision. Reflected polarization analysis has provided the first practical methodology in vision for distinguishing and classifying material surfaces according to different levels of electrical conductivity, with metals and dielectrics at the extremes. For the more controlled environments of machine vision, polarization-based methods are studied that significantly improve upon existing methods for accurate non-destructive inspection of materials in terms of their composition and defects such as cracks and scratches. One potentially very useful application is to inspection of VLSI chips. The research will also study how material classification from polarization-based methods can be used in computer vision to augment object descriptions in terms of material composition of subparts for object recognition. Polarization-based methods can be very simply used to extract shape constraints; the project examines how this can be used for object recognition. Finally, the research explores the application of polarization-based methods to color constancy, for simultaneous determination of object and light source color.
该项目扩展了基于偏振的视觉传感在低级机器视觉和高级计算机视觉中的独特能力。这篇由首席研究员撰写的博士论文开辟了视觉研究的一个新的子领域,利用反射偏振分析作为一种新的感官介质来提取目标特征,它在解决一些重要的图像理解问题上具有现有的基于强度和颜色的技术的关键优势。利用这些方法的基本基础,该研究探索了各种基于偏振的技术的发展,用于机器视觉中的检测过程,以及计算机视觉中的对象识别。反射极化分析提供了视觉上第一个实用的方法,用于根据不同的电导率水平区分和分类材料表面,金属和介质的表面处于极端状态。对于更受控制的机器视觉环境,人们研究了基于偏振的方法,这些方法显著改进了现有的方法,用于准确地无损检测材料的组成和缺陷,如裂纹和划痕。一个潜在的非常有用的应用是对VLSI芯片的检查。这项研究还将研究如何将基于偏振的材料分类方法用于计算机视觉,以根据用于物体识别的子部件的材料组成来增强物体描述。基于偏振的方法可以非常简单地用于提取形状约束;该项目研究了如何将其用于物体识别。最后,研究探索了基于偏振的方法在颜色恒定中的应用,以同时确定物体和光源的颜色。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lawrence Wolff其他文献

Lawrence Wolff的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lawrence Wolff', 18)}}的其他基金

CISE Research Infrastructure: A Networked Computing Environment for The Manipulation and Visualization of Geometric Data
CISE 研究基础设施:用于几何数据操作和可视化的网络计算环境
  • 批准号:
    9703080
  • 财政年份:
    1997
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Continuing Grant
NYI: Physical-Based Computer Vision: Polarization Vision, Reflectance Modeling and 3-D Vision
NYI:基于物理的计算机视觉:偏振视觉、反射建模和 3D 视觉
  • 批准号:
    9357757
  • 财政年份:
    1993
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Combining Machine Learning Explanation Methods with Expectancy-Value Theory to Identify Tailored Interventions for Engineering Student Persistence
将机器学习解释方法与期望值理论相结合,确定针对工程学生坚持的定制干预措施
  • 批准号:
    2335725
  • 财政年份:
    2024
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
High-Valent Iron-Oxo Species for Activation of Strong CH Bonds: New Designs with Novel Ab Initio Methods and Machine Learning
用于激活强CH键的高价铁氧物种:采用新颖的从头算方法和机器学习的新设计
  • 批准号:
    24K17694
  • 财政年份:
    2024
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Is evolution predictable? Unlocking fundamental biological insights using new machine learning methods
进化是可预测的吗?
  • 批准号:
    MR/X033880/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Fellowship
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Continuing Grant
Using Novel Machine Learning Methods to Personalize Strategies for Prevention of Persistent AKI after Cardiac Surgery
使用新颖的机器学习方法制定个性化策略,预防心脏手术后持续性 AKI
  • 批准号:
    10979324
  • 财政年份:
    2024
  • 资助金额:
    $ 5.97万
  • 项目类别:
Theoretical Guarantees of Machine Learning Methods for High Dimensional Partial Differential Equations: Numerical Analysis and Uncertainty Quantification
高维偏微分方程机器学习方法的理论保证:数值分析和不确定性量化
  • 批准号:
    2343135
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Standard Grant
Leveraging Causal Inference and Machine Learning Methods to Advance Evidence-Based Maternal Care and Improve Newborn Health Outcomes
利用因果推理和机器学习方法推进循证孕产妇护理并改善新生儿健康结果
  • 批准号:
    10604856
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
Development of Novel Intracellular Analysis Methods by Integrating Raman Imaging and Machine Learning
通过集成拉曼成像和机器学习开发新型细胞内分析方法
  • 批准号:
    22KJ0287
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Develop machine-learning-augmented URANS methods
开发机器学习增强的 URANS 方法
  • 批准号:
    2902286
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Studentship
Development of multi-element catalysts using extrapolative machine learning methods
使用外推机器学习方法开发多元素催化剂
  • 批准号:
    22KF0006
  • 财政年份:
    2023
  • 资助金额:
    $ 5.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了