Nonlinear Periodic Systems with Mode Localization and Motion Confinement Characteristics
具有模式局部化和运动限制特性的非线性周期系统
基本信息
- 批准号:9207318
- 负责人:
- 金额:$ 8.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1992
- 资助国家:美国
- 起止时间:1992-09-01 至 1996-02-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The principal scope of the proposed work is to show that weakly coupled, flexible, cyclic assemblies with geometric nonlinearities due to finite-amplitude motions, possess localized nonlinear modes, i.e., free oscillations during which the motion is mainly confined to only one of their subsystems. This will be achieved by using a multiple-scales averaging methodology and studying the corresponding amplitude and phase modulation equations. The effects of internal resonances between flexible modes on the mode localization will be analytically investigated and the force responses of the system due to external harmonic loads will be considered. It will be shown that weakly coupled cyclic assemblies possess fundamental, subharmonic and superharmonic localized resonances, during which only a limited number of their subsystems resonate. Motion confinement of externally generated disturbances due to nonlinear mode localization will then be investigated by numerical computations, involving finite element and Gallerkin methodologies. The principal aim of this study is to show that the inherent dynamics of certain weakly coupled, nonlinear cyclic systems, lead to motion confinement of externally induced disturbances. The controllability of such systems is then greatly improved, since in designing for passive or active vibration isolation, one needs only consider the dynamics of a limited number of their substructure instead of considering the response of the whole cyclic assembly.*** //
拟议工作的主要范围是表明,弱 耦合的、柔性的、循环的组件, 由于有限振幅运动的非线性, 非线性模式,即,自由振荡, 主要局限于其中一个子系统。这将是 通过使用多尺度平均法实现, 研究相应的幅度和相位调制 方程弹性体之间的内共振效应 模态对模态局部化的影响将被解析地研究 以及系统在外部谐波作用下的力响应 负载将被考虑。结果表明,弱耦合 循环组合具有基波、次谐波和 超谐波局部共振,在此期间,只有有限的 它们的子系统的数量共振。运动约束 非线性模式引起的外部扰动 然后通过数值计算来研究局部化, 包括有限元和Gallerkin方法。的 本研究的主要目的是表明, 某些弱耦合,非线性循环系统,导致 外部感应扰动的运动限制。的 这样的系统的可控性大大提高,因为 在设计被动或主动隔振时, 只考虑有限数量的动态, 而不是考虑整体的反应 循环装配。* //
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alexander Vakakis其他文献
Alexander Vakakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alexander Vakakis', 18)}}的其他基金
Collaborative Research: A New Nonlinear Modal Updating Framework for Soft, Hydrated Materials
协作研究:用于软水合材料的新型非线性模态更新框架
- 批准号:
1727761 - 财政年份:2017
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Collaborative Research: Intentionally Nonlinear Design of High-frequency Atomic Force Microscopy for Enhanced Material Characterization
合作研究:用于增强材料表征的高频原子力显微镜的有意非线性设计
- 批准号:
1463558 - 财政年份:2015
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Dynamics of Bluff Bodies with Internal Nonlinear Oscillators: Vortex-Induced Vibration Suppression, Partial Wake Stabilization, and Drag Reduction
具有内部非线性振荡器的钝体动力学:涡激振动抑制、部分尾流稳定和减阻
- 批准号:
1363231 - 财政年份:2014
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Collaborative Research: Nonlinear Design and Development of Multi Degree-of-freedom Broadband Energy Harvesting Systems
合作研究:多自由度宽带能量收集系统的非线性设计与开发
- 批准号:
1100722 - 财政年份:2011
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Collaborative Research: Global/Local System Identification of Strongly Nonlinear Dynamical Systems
合作研究:强非线性动力系统的全局/局部系统辨识
- 批准号:
0927995 - 财政年份:2009
- 资助金额:
$ 8.77万 - 项目类别:
Standard Grant
Nonlinear Localization for Shock Isolation of Flexile Structures
柔性结构冲击隔离的非线性定位
- 批准号:
0000060 - 财政年份:2000
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
REU Site: Undergraduate Symbolic Computations in Engineering and Science (USCES)
REU 网站:本科生工程与科学符号计算 (USCES)
- 批准号:
9531571 - 财政年份:1996
- 资助金额:
$ 8.77万 - 项目类别:
Continuing Grant
相似海外基金
Ice, Ice, Babies! The role of periodic and catastrophic ice loss on species connectivity in polar systems.
冰,冰,宝贝们!
- 批准号:
2883145 - 财政年份:2023
- 资助金额:
$ 8.77万 - 项目类别:
Studentship
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Postdoctoral Fellowships
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
- 批准号:
RGPIN-2018-04187 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Discovery Grants Program - Individual
Piecewise expanding dynamical systems with neutral periodic points
具有中性周期点的分段展开动力系统
- 批准号:
574520-2022 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
University Undergraduate Student Research Awards
Quantum Monte Carlo studies of periodic many-body systems
周期性多体系统的量子蒙特卡罗研究
- 批准号:
2731113 - 财政年份:2022
- 资助金额:
$ 8.77万 - 项目类别:
Studentship
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
- 批准号:
RGPIN-2018-04187 - 财政年份:2021
- 资助金额:
$ 8.77万 - 项目类别:
Discovery Grants Program - Individual
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2021
- 资助金额:
$ 8.77万 - 项目类别:
Postdoctoral Fellowships
Development of Relativistic Electronic Structure Approaches for the Calculation of Structural, Mechanical and Spectroscopic Properties of Infinite Periodic Systems
开发用于计算无限周期系统的结构、力学和光谱特性的相对论电子结构方法
- 批准号:
545643-2020 - 财政年份:2020
- 资助金额:
$ 8.77万 - 项目类别:
Postdoctoral Fellowships
Local correlation approaches for ground and excited states of periodic systems
周期系统基态和激发态的局部相关方法
- 批准号:
RGPIN-2018-04187 - 财政年份:2020
- 资助金额:
$ 8.77万 - 项目类别:
Discovery Grants Program - Individual
INTEGRABLE SYSTEMS OF PDE WITH QUASI-PERIODIC INITIAL DATA
具有准周期初始数据的偏微分方程可积系统
- 批准号:
RGPIN-2015-05140 - 财政年份:2019
- 资助金额:
$ 8.77万 - 项目类别:
Discovery Grants Program - Individual