Rational Machine Learning for AI Planning

用于人工智能规划的理性机器学习

基本信息

  • 批准号:
    9209394
  • 负责人:
  • 金额:
    $ 21.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1993
  • 资助国家:
    美国
  • 起止时间:
    1993-02-01 至 1997-10-31
  • 项目状态:
    已结题

项目摘要

This research seeks to build a theoretical framework for when to learn. Machine learning, which studies the automatic acquisition of new concepts, has largely focussed on developing mechanisms for learning. Questions such as "How can an AI computer system come to form a general concept in response to a relatively few observed training examples?" and "What prior knowledge is required to support such concept acquisition?" have dominated the field. However, it has become clear that the unbridled acquisition of concepts (even correct concepts) can degrade the performance of the AI system that they are intended to help. In sophisticated applications, such as arise in AI planning, a performance penalty for learning can be the rule rather than the exception. Thus, machine learning mechanisms cannot be successful unless suitably restrained. Unfortunately, the judgement of when to learn is itself complex. The benefit of a new concept depends on features of the performance system as well as the machine learning mechanism. It can also be strongly influenced by the expected profile of tasks to be given to the performance system and by the concepts that have previously been acquired. The proposed research is intended to produce a fist theory of rational learning. The learning component of an AI system is a rational learner if the AI system's behavior is guaranteed, on average, to be improved by the acquisition of any new concepts. Such a theory must provide a general framework for the interactions between a machine learning system, the performance system that employs the acquired concepts, and characteristics of the estimated distribution of tasks. The research will explore both empirical and analytic approaches to estimating expected concept utility. The area of planning will serve as a vehicle for the work, but the results will likely be applicable to other performance systems. Explanation-based methods form the nucleus of learning methods since it, more than the inductive approach, seems liable to the phenomenon of detrimental learning. The benefits of the research will include an enumeration and taxonomy of the types of rational learning. It will shed light on which machine learning mechanisms may be most useful to which type of AI systems, and represents some first steps towards making machine learning a service area for the rest of AI.
这项研究旨在建立一个关于何时学习的理论框架。 机器学习研究新概念的自动获取,主要侧重于开发学习机制。 诸如“人工智能计算机系统如何根据相对较少的观察到的训练示例形成一个一般概念?”之类的问题。 以及“需要哪些先验知识来支持这种概念获取?” 已经占据了该领域的主导地位。 然而,很明显,无节制地获取概念(甚至是正确的概念)可能会降低它们旨在帮助的人工智能系统的性能。 在复杂的应用中,例如人工智能规划中的应用,学习的性能损失可能是规则而不是例外。 因此,除非适当限制,机器学习机制不可能成功。 不幸的是,何时学习的判断本身就很复杂。 新概念的好处取决于性能系统的特征以及机器学习机制。 它还可能受到交付给绩效系统的预期任务概况以及先前获得的概念的强烈影响。 拟议的研究旨在产生理性学习的第一理论。 如果人工智能系统的行为平均而言能够通过获取任何新概念而得到改善,那么人工智能系统的学习组件就是理性学习者。 这样的理论必须为机器学习系统、采用所获得概念的性能系统以及任务估计分布的特征之间的交互提供一个通用框架。 该研究将探索估计预期概念效用的实证和分析方法。 规划领域将作为工作的载体,但结果可能适用于其他绩效系统。 基于解释的方法构成了学习方法的核心,因为它比归纳方法更容易出现有害学习的现象。 该研究的好处将包括理性学习类型的列举和分类。 它将阐明哪些机器学习机制可能对哪种类型的人工智能系统最有用,并且代表了使机器学习成为其他人工智能的服务领域的一些第一步。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gerald DeJong其他文献

Robustness through prior knowledge: using explanation-based learning to distinguish handwritten Chinese characters
Explanation-Based Learning.
基于解释的学习。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gerald DeJong;S. Lim
  • 通讯作者:
    S. Lim

Gerald DeJong的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gerald DeJong', 18)}}的其他基金

Incorporating Prior Domain Knowledge into a Support Vector Machine Classifier with Explanation-Based Learning
通过基于解释的学习将先验领域知识纳入支持向量机分类器
  • 批准号:
    0413161
  • 财政年份:
    2004
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
"Explanation-Based Learning"
“基于解释的学习”
  • 批准号:
    8719766
  • 财政年份:
    1988
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Continuing Grant
Equipment for Computer Research
计算机研究设备
  • 批准号:
    8504823
  • 财政年份:
    1985
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
A Computer Model of Learning Classical Mechanics (Informa- tion Science)
学习经典力学的计算机模型(信息科学)
  • 批准号:
    8511542
  • 财政年份:
    1985
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
Explanatory Schema Acquisition (Information Science)
解释性模式获取(信息科学)
  • 批准号:
    8317889
  • 财政年份:
    1984
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Continuing Grant
Explanatory Schema Acquisition
解释性模式获取
  • 批准号:
    8120254
  • 财政年份:
    1982
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Continuing Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
  • 批准号:
    2327473
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
CC* Campus Compute: UTEP Cyberinfrastructure for Scientific and Machine Learning Applications
CC* 校园计算:用于科学和机器学习应用的 UTEP 网络基础设施
  • 批准号:
    2346717
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
Learning to create Intelligent Solutions with Machine Learning and Computer Vision: A Pathway to AI Careers for Diverse High School Students
学习利用机器学习和计算机视觉创建智能解决方案:多元化高中生的人工智能职业之路
  • 批准号:
    2342574
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
Excellence in Research:Towards Data and Machine Learning Fairness in Smart Mobility
卓越研究:实现智能移动中的数据和机器学习公平
  • 批准号:
    2401655
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of using machine learning to predict oxaliplatin chemotherapy benefit in early colon cancer
I-Corps:利用机器学习预测奥沙利铂化疗对早期结肠癌疗效的转化潜力
  • 批准号:
    2425300
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
CAREER: Mitigating the Lack of Labeled Training Data in Machine Learning Based on Multi-level Optimization
职业:基于多级优化缓解机器学习中标记训练数据的缺乏
  • 批准号:
    2339216
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Continuing Grant
Postdoctoral Fellowship: OPP-PRF: Leveraging Community Structure Data and Machine Learning Techniques to Improve Microbial Functional Diversity in an Arctic Ocean Ecosystem Model
博士后奖学金:OPP-PRF:利用群落结构数据和机器学习技术改善北冰洋生态系统模型中的微生物功能多样性
  • 批准号:
    2317681
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 21.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了