Research Initiation Award: Predicting and Characterizing Noisy Time Series
研究启动奖:预测和表征噪声时间序列
基本信息
- 批准号:9309786
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-09-01 至 1997-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9309786 Weigend The progress in the last decade in predicting and understanding time series has been remarkable. Where once time series analysis was shaped by linear systems theory, it is now possible to recognize when an apparently complicated time series has been produced by a low- dimensional nonlinear system, characterize its essential properties, and build a model that can be used for prediction. At the opposite extreme, there is now a much richer framework for designing algorithms such as neural networks that can learn and adapt to the structure in time series that do not have a simple origin. This research addresses the following three questions: How to estimate the accuracy in time series prediction, how to deal with data sets that are noisy and chaotic, and how to characterize the system that temporal sequence by analyzing the predictive model. The tools to be developed in response to these questions combine recent advances from connectionism and dynamical systems theory. They will be evaluated on real-world data, submitted by various groups for consideration at the Time Series Prediction and Analysis Competition that was held under the auspices of the Santa Fe Institute. ***
9309786 Weigend在过去十年中,在预测和理解时间序列方面取得了显着的进展。 一旦时间序列分析是由线性系统理论形成的,现在就可以识别出低维非线性系统何时产生了明显复杂的时间序列,描述其基本属性,并建立可用于预测的模型。 在另一个极端,现在有一个更丰富的框架来设计算法,如神经网络,可以学习和适应没有简单起源的时间序列结构。 本研究解决了以下三个问题:如何估计时间序列预测的准确性,如何处理噪声和混沌的数据集, 以及如何通过分析预测模型来刻画时间序列的系统。 为回答这些问题而开发的工具结合了联合收割机和动力系统理论的最新进展。 将根据各团体提交的供在圣菲研究所主持下举行的时间序列预测和分析竞赛上审议的真实世界数据对它们进行评价。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andreas Weigend其他文献
The Future of Time Series ; CU-CS-670-93
时间序列的未来;
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
N. Gershenfeld;Andreas Weigend - 通讯作者:
Andreas Weigend
Andreas Weigend的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Research Initiation Award: Integrated Approach Toward Examining Fecal Indicator Bacteria Trends in a Coastal Watershed
研究启动奖:检查沿海流域粪便指示细菌趋势的综合方法
- 批准号:
2300319 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Turan-type problems on partially ordered sets
研究启动奖:偏序集上的图兰型问题
- 批准号:
2247163 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: A GNN+BiMCLSTM Based Framework to Model, Predict, and Traceback Malware Strains
研究启动奖:基于 GNN BiMCLSTM 的框架,用于建模、预测和追溯恶意软件菌株
- 批准号:
2300405 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Uncovering and Extracting Biological Information from Nanopore Long-read Sequencing Data with Machine Learning and Mathematical Approaches
研究启动奖:利用机器学习和数学方法从纳米孔长读长测序数据中发现和提取生物信息
- 批准号:
2300445 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Highly Stable Nanoparticle-Doped Metal-Organic Frameworks for Applications in Water Purification
研究启动奖:用于水净化应用的高度稳定的纳米颗粒掺杂金属有机框架
- 批准号:
2344742 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Implementing the Next-Generation IoT Ecosystem with AI Capabilities
研究启动奖:利用人工智能能力实施下一代物联网生态系统
- 批准号:
2200377 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Thermal Decomposition of Four-membered Heterocyclic Peroxides, Data Mining in Nonadiabatic Trajectories, and Chemiexcitation Efficiency
研究启动奖:四元杂环过氧化物的热分解、非绝热轨迹数据挖掘、化学激发效率
- 批准号:
2300321 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Analysis of Glycoprotein Composition and Function of PGE2 EP Receptors in Mammary-derived Cells
研究启动奖:乳腺细胞中 PGE2 EP 受体的糖蛋白组成和功能分析
- 批准号:
2300448 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Investigating Instructional Conditions for Robust Learning in Biology
研究启动奖:研究生物学稳健学习的教学条件
- 批准号:
2300454 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant
Research Initiation Award: Exploring Class A G-Protein Coupled Receptors (GPCRs)-Ligand Interaction through Machine Learning Approaches
研究启动奖:通过机器学习方法探索 A 类 G 蛋白偶联受体 (GPCR)-配体相互作用
- 批准号:
2300475 - 财政年份:2023
- 资助金额:
$ 10万 - 项目类别:
Standard Grant