Knowledge Discovery in Temporal Databases

时态数据库中的知识发现

基本信息

  • 批准号:
    9318773
  • 负责人:
  • 金额:
    $ 20.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-10-01 至 1997-12-31
  • 项目状态:
    已结题

项目摘要

*** 9318773 Tuzhilin More and more application domains, from financial market analysis to weather prediction, from monitoring supermarket purchases to monitoring satellite images, are becoming increasingly data-intensive. For this reason, the area of knowledge discovery in databases has recently attracted much interest of database researchers. Since many data mining applications are temporal in nature, it is important to study the problems of pattern discovery in the temporal database context. The purpose of this project is to (1) develop a framework for the characterization and classification of temporal patterns; (2) identify and characterize various types of pattern discovery problems within the proposed framework; (3) evaluate the applicability of existing techniques from artificial intelligence, operations research, signal processing, statistical time-series analysis, and other related disciplines to the problems from part (2), and to develop new temporal pattern discovery techniques, whenever necessary -- also these techniques should be made more efficient, if possible; and (4) parallelize the discovery algorithms in order to make them computationally feasible; this is important because temporal pattern discovery problems typically deal with large volumes of data. As a result of this project, a system will be developed that helps a user to discover knowledge from a large volume of temporal data. This research will provide a better theoretical understanding of the problems of pattern discovery in temporal databases, as well as provide some practical tools for finding patterns in temporal data. Potential applications of this work include financial, marketing, and medical applications, among others. ***
* 9318773图智林越来越多的应用领域,从金融市场分析到天气预报,从监控超市采购到监控卫星图像,数据密集度越来越高。因此,数据库中的知识发现领域最近引起了数据库研究人员的极大兴趣。由于许多数据挖掘应用都是时态的,因此研究时态数据库环境下的模式发现问题具有重要意义。本计画的目的是(1)发展一个时间模式的表征与分类的架构;(2)在所提出的架构内,辨识与表征各种类型的模式发现问题;(3)评估现有技术的适用性,包括人工智能、运筹学、信号处理、统计时间序列分析,和其他相关学科的问题,从第(2)部分,并开发新的时间模式发现技术,只要有必要-这些技术也应该更有效,如果可能的话;和(4)并行化的发现算法,以便使它们计算上可行的;这是重要的,因为时间模式发现问题通常处理大量数据。作为该项目的成果,将开发一个系统,帮助用户从大量的时间数据中发现知识。本研究将为时态数据库中模式发现问题提供更好的理论理解,同时也为时态数据中模式发现提供一些实用工具。这项工作的潜在应用包括金融,营销和医疗应用等。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander Tuzhilin其他文献

Recommendation opportunities: improving item prediction using weighted percentile methods in collaborative filtering systems
推荐机会:在协同过滤系统中使用加权百分位数方法改进项目预测
Recommending Items with Conditions Enhancing User Experiences Based on Sentiment Analysis of Reviews
基于评论情感分析推荐符合条件的物品以增强用户体验
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Konstantin Bauman;B. Liu;Alexander Tuzhilin
  • 通讯作者:
    Alexander Tuzhilin
Providing information system support for simulations using the Cassandra+ system
  • DOI:
    10.1023/a:1018996221025
  • 发表时间:
    1997-01-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    P. Balasubramanian;Alexander Tuzhilin
  • 通讯作者:
    Alexander Tuzhilin
Knowledge management revisited
重新审视知识管理
Towards the Next Generation of Recommender Systems
  • DOI:
    10.2991/icebi.2010.28
  • 发表时间:
    2010-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexander Tuzhilin
  • 通讯作者:
    Alexander Tuzhilin

Alexander Tuzhilin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander Tuzhilin', 18)}}的其他基金

EAGER: Collaborative Research: Sequential Recommender Systems in Mobile and Pervasive Environments
EAGER:协作研究:移动和普及环境中的顺序推荐系统
  • 批准号:
    1256036
  • 财政年份:
    2012
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant
ACM Recommender Systems Conference 2011 Doctoral Symposium
ACM 推荐系统大会 2011 博士生研讨会
  • 批准号:
    1144050
  • 财政年份:
    2011
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Standard Grant

相似海外基金

Pattern and Knowledge Discovery on Relational, Biosequence and Multiple Temporal Sequence Data
关系、生物序列和多时间序列数据的模式和知识发现
  • 批准号:
    RGPIN-2017-05042
  • 财政年份:
    2021
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern and Knowledge Discovery on Relational, Biosequence and Multiple Temporal Sequence Data
关系、生物序列和多时间序列数据的模式和知识发现
  • 批准号:
    RGPIN-2017-05042
  • 财政年份:
    2020
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Toward reducing the conflicts between native cormorants and local residents -- Knowledge discovery from historical records by using temporal information analysis
减少本土鸬鹚与当地居民之间的冲突——利用时态信息分析从历史记录中发现知识
  • 批准号:
    20H04381
  • 财政年份:
    2020
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pattern and Knowledge Discovery on Relational, Biosequence and Multiple Temporal Sequence Data
关系、生物序列和多时间序列数据的模式和知识发现
  • 批准号:
    RGPIN-2017-05042
  • 财政年份:
    2019
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern and Knowledge Discovery on Relational, Biosequence and Multiple Temporal Sequence Data
关系、生物序列和多时间序列数据的模式和知识发现
  • 批准号:
    RGPIN-2017-05042
  • 财政年份:
    2018
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Pattern and Knowledge Discovery on Relational, Biosequence and Multiple Temporal Sequence Data
关系、生物序列和多时间序列数据的模式和知识发现
  • 批准号:
    RGPIN-2017-05042
  • 财政年份:
    2017
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Data models and algorithms for knowledge discovery in spatio-temporal data
时空数据知识发现的数据模型和算法
  • 批准号:
    342224-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Data models and algorithms for knowledge discovery in spatio-temporal data
时空数据知识发现的数据模型和算法
  • 批准号:
    342224-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Knowledge Discovery: Data cleaning, caudal mining, spatio-temporal mining, and discovery-aided
知识发现:数据清理、尾部挖掘、时空挖掘和发现辅助
  • 批准号:
    121504-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
Data models and algorithms for knowledge discovery in spatio-temporal data
时空数据知识发现的数据模型和算法
  • 批准号:
    342224-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 20.98万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了