Field Measurement and Theoretical Study of the Fractal Properties of Hydraulic Conductivity

水力电导率分形特性的现场测量与理论研究

基本信息

  • 批准号:
    9405075
  • 负责人:
  • 金额:
    $ 25.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1994
  • 资助国家:
    美国
  • 起止时间:
    1994-08-15 至 1997-07-31
  • 项目状态:
    已结题

项目摘要

19405075 Molz During the past decade, interest in the use of fractal concepts to describe various phenomena in the Earth Sciences, including subsurface hydrology, has been increasing. It has become apparent that many, if not most, porous media posses a hierarchical structure. It is not clear how classical transport theory based on the concept of a representative elementary volume should be applied at the vastly different scales of interest in such natural media. While it is not known how the term "hierarchical structure" should be defined, there is experimental evidence that the hierarchical structure of the three-dimensional hydraulic conductivity function exhibits the spatial structure of certain self-affine, stochastic fractals called Gaussian noise (fGn) and fractional Brownian motion (fBm). This work would develop a fractal-based method for constructing three-dimensional distributions of field-measured K from a limited number of measurements. Three dimensional horizontal K distributions will be obtained at a variety of field sites using the new electromagnetic (EM) borehole flowmeter. Data sets will then be analyzed for the presence of fGn/fBm using rescaled range analysis. This will be followed by the generation of stochastic K interpolations and a study of the distribution properties using modern computer graphics. Finally, an attempt will be made to relate the potential fractal properties of natural porous media to the physics of the probably chaotic processes that determine the property distributions of sediments. From an aquifer transport viewpoint, K is the single most important property function. For any particular aquifer, K varies over one or more orders of magnitude and is highly heterogeneous. Yet making sense of the K distribution is often a prerequisite to understanding the pattern of contaminant migration in polluted aquifers. A tremendous amount of money is spent attempting to characterize aquifers using tools that are not adequate to the task. The proposed work has the potential to lead to the development of new theoretical tools and practical insights that could contribute significantly to the long-term solution of subsurface contamination problems. It will have the potential to establish a new practical framework for transport phenomena at a variety of scales in natural porous media.
小行星19405075 在过去的十年中,在使用分形概念来描述地球科学,包括地下水文学的各种现象的兴趣一直在增加。 很明显,许多(如果不是大多数的话)多孔介质具有分级结构。 目前尚不清楚如何经典的输运理论的基础上的概念,一个代表性的基本体积应适用于在这样的自然介质中的巨大不同规模的利益。 虽然目前还不知道如何定义术语“层次结构”,但有实验证据表明,三维水力传导系数函数的层次结构表现出称为高斯噪声(fGn)和分数布朗运动(fBM)的某些自仿射随机分形的空间结构。 这项工作将开发一种基于分形的方法,用于从有限数量的测量中构建现场测量的K的三维分布。 三维水平K分布将获得在各种现场使用新的电磁(EM)钻孔流量计。 然后使用重新标度的范围分析分析数据集是否存在fGn/fBm。 其次是随机K插值的生成和使用现代计算机图形学的分布特性的研究。 最后,将尝试将天然多孔介质的潜在分形特性与决定沉积物属性分布的可能混沌过程的物理学联系起来。 从含水层输运的角度来看,K是唯一最重要的属性函数。 对于任何特定的含水层,K值的变化超过一个或多个数量级,并且具有高度的异质性。 然而,理解K分布往往是理解污染含水层中污染物迁移模式的先决条件。 人们花费了大量资金试图使用不足以完成任务的工具来描述含水层的特征。 拟议的工作有可能导致新的理论工具和实际的见解,可以大大有助于地下污染问题的长期解决方案的发展。 它将有可能建立一个新的实际框架,在各种规模的天然多孔介质中的传输现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph Judkins其他文献

Joseph Judkins的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

Investigation of the characteristics of alternating current nanopore measurement and establishment of the theoretical basis.
研究交流电纳米孔测量特性并建立理论基础。
  • 批准号:
    23H01417
  • 财政年份:
    2023
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of an Innovative Measurement Technology and a High-Accuracy Theoretical Estimation Method for Ship Advancing in Waves
船舶波浪前进创新测量技术和高精度理论估算方法的开发
  • 批准号:
    21H01547
  • 财政年份:
    2021
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Theoretical studies on nonperturbative methods of analyzing quantum many-body dynamics subject to single-atom-resolved measurement and control
单原子分辨测控量子多体动力学非微扰分析方法的理论研究
  • 批准号:
    19K23424
  • 财政年份:
    2019
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Construction of multi-view cavity shape measurement and improvement of theoretical calculation of propeller cavitation
多视角空泡形状测量构建及螺旋桨空泡理论计算改进
  • 批准号:
    19K04871
  • 财政年份:
    2019
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Measurement of vapor transfer resistance in pores of adsorbents during isothermal reaction, and theoretical prediction of resistance considering the pore characteristics of adsorbents
等温反应过程中吸附剂孔内蒸汽传输阻力的测量,以及考虑吸附剂孔特性的阻力理论预测
  • 批准号:
    19K04239
  • 财政年份:
    2019
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Theoretical study of symmetry breaking, exotic phases, and measurement theory in nonequilibrium open-system ultracold atomic gases
非平衡开放系统超冷原子气体中对称破缺、奇异相和测量理论的理论研究
  • 批准号:
    18H01145
  • 财政年份:
    2018
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of theoretical system for nano-gap fluid lubrication based on flow measurement
基于流量测量的纳米间隙流体润滑理论体系构建
  • 批准号:
    17H01243
  • 财政年份:
    2017
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Theoretical and Empirical Research on Recognition and Measurement of Liabilities
负债确认与计量的理论与实证研究
  • 批准号:
    17K04051
  • 财政年份:
    2017
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The high sensitivity and comprehensive measurement of chemical agents - Theoretical prediction of spectroscopic properties by quantum chemical calculation -
化学试剂的高灵敏度和综合测量-通过量子化学计算对光谱性质进行理论预测-
  • 批准号:
    15K01227
  • 财政年份:
    2015
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Control of light-driven fast internal rotation in crystalline molecular gyroscopes: Theoretical design, synthesis, and measurement
晶体分子陀螺仪中光驱动快速内旋转的控制:理论设计、合成和测量
  • 批准号:
    15KT0138
  • 财政年份:
    2015
  • 资助金额:
    $ 25.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了