Quantum Dynamics with Classically Chaotic Limit
具有经典混沌极限的量子动力学
基本信息
- 批准号:9412706
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1994
- 资助国家:美国
- 起止时间:1994-12-01 至 1995-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9412706 Sundaram The focal point of this research proposal is the understanding of the use, efficacy and limitations of classical and semi-classical methods in describing the dynamics of strongly coupled quantum systems. Since the strength of the interaction precludes the use of quantum perturbation theory in these systems, non-perturbative intuition is derived from a classical description of the dynamics, which is most often nonintegrable or chaotic. A number of important issues of both practical and formal consequence arise from the quantization of dynamics with a classically chaotic limit. In particular, we propose to investigate 1) the periodic orbit expansion starting from exact expressions of the trace of quantum propagators, the contributions of analytically continued orbits and the possibility of conherence (scarred wave functions) associated with these so-called 'ghost' orbits,2) the effects of noise introduced via parametric fluctuations on de stabilizing scarred wave-functions and 3) scarred wave functions in higher dimensions with specific application to the problems of stabilization of ground state atoms in super-intense laser fields and to the noise spectroscopy in the interaction of Rydberg atoms with microwaves. ***
9412706 Sundaram本研究建议的重点是理解经典和半经典方法在描述强耦合量子系统动力学中的使用、有效性和局限性。由于相互作用的强度排除了量子微扰理论在这些系统中的应用,非微扰直觉是从动力学的经典描述中推导出来的,这通常是不可积的或混沌的。具有经典混沌极限的动力学量子化产生了许多具有实际和形式意义的重要问题。特别是,我们建议研究1)从量子传播子轨迹的精确表达式出发的周期轨道展开,解析连续轨道的贡献以及与这些所谓的“幽灵”轨道相关的凝聚(疤痕波函数)的可能性,2)通过参数涨落引入的噪声对去稳定疤痕波函数的影响,3)高维疤痕波函数,具体应用于超强激光场中基态原子的稳定问题和里德堡原子与微波相互作用中的噪声谱。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bala Sundaram其他文献
Simulating sympathetic cooling of atomic mixtures in nonlinear traps
- DOI:
10.1016/j.physleta.2017.06.046 - 发表时间:
2017-09-12 - 期刊:
- 影响因子:
- 作者:
Francisco Jauffred;Roberto Onofrio;Bala Sundaram - 通讯作者:
Bala Sundaram
Bala Sundaram的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bala Sundaram', 18)}}的其他基金
Conference: Understanding Democracy, Elections, and Political Accountability
会议:了解民主、选举和政治责任
- 批准号:
2321010 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
- 批准号:
2235034 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Fellowship Award
Graduate Research Fellowship Program (GRFP)
研究生研究奖学金计划(GRFP)
- 批准号:
1842403 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Fellowship Award
Mixed Phase Spaces: Templates for Quantum Manipulation
混合相空间:量子操纵的模板
- 批准号:
0099431 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing Grant
Quantum Coherences, Fluctuations and Chaos
量子相干性、波动和混沌
- 批准号:
9800966 - 财政年份:1998
- 资助金额:
-- - 项目类别:
Continuing Grant
Quantum Dynamics with Classically Chaotic Limit
具有经典混沌极限的量子动力学
- 批准号:
9796103 - 财政年份:1996
- 资助金额:
-- - 项目类别:
Standard Grant
Quantum Dynamics with Classically Chaotic Limit
具有经典混沌极限的量子动力学
- 批准号:
9596108 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Bridging Sea Ice Dynamics from Floe to Basin Scales
职业:弥合从浮冰到盆地尺度的海冰动力学
- 批准号:
2338233 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326020 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: BoCP-Implementation: Alpine plants as a model system for biodiversity dynamics in a warming world: Integrating genetic, functional, and community approaches
合作研究:BoCP-实施:高山植物作为变暖世界中生物多样性动态的模型系统:整合遗传、功能和社区方法
- 批准号:
2326021 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4: NSF: Developing 3D Models of Live-Endothelial Cell Dynamics with Application Appropriate Validation
RII Track-4:NSF:开发活内皮细胞动力学的 3D 模型并进行适当的应用验证
- 批准号:
2327466 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: First-principles Predictive Understanding of Chemical Order in Complex Concentrated Alloys: Structures, Dynamics, and Defect Characteristics
职业:复杂浓缩合金中化学顺序的第一原理预测性理解:结构、动力学和缺陷特征
- 批准号:
2415119 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
- 批准号:
2401019 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
NSF Postdoctoral Fellowship in Biology: Understanding the role of dietary toxins in shaping microbial community dynamics in the gut
NSF 生物学博士后奖学金:了解膳食毒素在塑造肠道微生物群落动态中的作用
- 批准号:
2305735 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Fellowship Award
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




