Active Control of Structures Using Neural Networks and Fuzzy Logic

使用神经网络和模糊逻辑对结构进行主动控制

基本信息

项目摘要

9503209 Ghaboussi This project continues and extends the development of an active structural control method using neural networks by the investigators at the University of Illinois in 1992 under the NSF's structural control program. The main controller in the new method of structural control is a trained neural network, referred to as the neuro-controller. The training of the neuro-controller is accomplished with the aid of an emulator neural network, which is first trained to learn the structural behavior. Results from the numerical simulations showed that the new structural control method performs well compared to other control methods and is far more robust as well as being an inherently adaptive controller. In this project research on neural network based methods of structural control will be continued to consist of (1) experimental verification of the new structural control method; and (2) the extension into nonlinear control problems. The experimental work will be done in two stages. In the initial stage, extensive trial and error, adjustment and the online training of the emulator neural network and the neuro-controller will be done. Verification tests will be conducted on the shaking table at the University of Illinois Structural Engineering Laboratory, using a three story, one bay structural model, similar to those used in numerical simulations. The next stage of experimental work will be conducted at the NCEER facilities, on a larger structural model. Finally, the new method of structural control must be extended to address the problem of nonlinear control of structures sustaining unpredictable damage and develop a feasible and practical method of nonlinear structural control. ***
9503209 Ghaboussi该项目继续并扩展了1992年在美国国家科学基金会的结构控制计划下由伊利诺伊大学的研究人员使用神经网络的主动结构控制方法的发展。 在新的结构控制方法中,主控制器是一个经过训练的神经网络,称为神经控制器。 神经控制器的训练是在仿真器神经网络的帮助下完成的,该仿真器神经网络首先被训练以学习结构行为。 数值仿真结果表明,新的结构控制方法相比,其他控制方法表现良好,是更强大的,以及作为一个固有的自适应控制器。 在这个项目中,基于神经网络的结构控制方法的研究将继续包括(1)新的结构控制方法的实验验证;(2)扩展到非线性控制问题。 实验工作将分两个阶段进行。 在初始阶段,将进行大量的试验和错误,调整和在线训练的仿真神经网络和神经控制器。 验证试验将在伊利诺伊大学结构工程实验室的振动台上进行,使用三层,一个海湾结构模型,类似于数值模拟中使用的模型。 下一阶段的实验工作将在NCEER设施中进行,采用更大的结构模型。 最后,必须将新的结构控制方法扩展到解决承受不可预测损伤的结构的非线性控制问题,并开发出一种可行的和实用的非线性结构控制方法。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jamshid Ghaboussi其他文献

Jamshid Ghaboussi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jamshid Ghaboussi', 18)}}的其他基金

ITR/AP: Simulation of Machine-Medium Interaction in a Real-Time Virtual Environment
ITR/AP:实时虚拟环境中机器与介质交互的模拟
  • 批准号:
    0113745
  • 财政年份:
    2001
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Smart Fiber Optics System for Condition Monitoring of Railway Bridges
铁路桥梁状态监测智能光纤系统
  • 批准号:
    9908651
  • 财政年份:
    1999
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
New Method of Experimentation and Constitutive Modelling Using Neural Networks
使用神经网络进行实验和本构建模的新方法
  • 批准号:
    9503462
  • 财政年份:
    1995
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Neural Networks in Material Modeling and Computational Mechanics
材料建模和计算力学中的神经网络
  • 批准号:
    9214910
  • 财政年份:
    1992
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Active Control of Structures Using Neural Networks
使用神经网络主动控制结构
  • 批准号:
    9201437
  • 财政年份:
    1992
  • 资助金额:
    $ 27万
  • 项目类别:
    Continuing Grant
Evaluation of Liquefaction Potential of Saturated Granular Soils
饱和粒状土液化势的评价
  • 批准号:
    7600626
  • 财政年份:
    1976
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Development of innovative light-emitting-materials by construction of optically active higher-ordered structures and control of morphologies
通过构建光学活性高阶结构和形态控制来开发创新发光材料
  • 批准号:
    19H02792
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Active Shape Control of Membrane Space Structures via Distributed Input Utilizing Solar Radiation Pressure
利用太阳辐射压力通过分布式输入对膜空间结构进行主动形状控制
  • 批准号:
    18J11615
  • 财政年份:
    2018
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Modeling, sensor-based characterization and active control of vaporization processes in microchannel structures
微通道结构中汽化过程的建模、基于传感器的表征和主动控制
  • 批准号:
    295586084
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Research Units
Active control of far-field sound power produced by vibrating structures using direct distributed sensing of acoustic radiation modes
使用声辐射模式的直接分布式传感对振动结构产生的远场声功率进行主动控制
  • 批准号:
    1721765
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Studentship
Differential analysis of the crystal structures of active / inactive orexin receptor contributing to rational development of sleep control drug
活性/非活性食欲素受体晶体结构的差异分析有助于睡眠控制药物的合理开发
  • 批准号:
    15K08268
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigation of the role of REM-active pontine structures in the control of active expiration
REM 活跃脑桥结构在控制主动呼气中的作用的研究
  • 批准号:
    479990-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    University Undergraduate Student Research Awards
Advanced computational mechanics, extension of the finite element method to simulating active vibration control of elastic structures
高级计算力学,将有限元方法扩展到模拟弹性结构的主动振动控制
  • 批准号:
    5676-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced computational mechanics, extension of the finite element method to simulating active vibration control of elastic structures
高级计算力学,将有限元方法扩展到模拟弹性结构的主动振动控制
  • 批准号:
    5676-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced computational mechanics, extension of the finite element method to simulating active vibration control of elastic structures
高级计算力学,将有限元方法扩展到模拟弹性结构的主动振动控制
  • 批准号:
    5676-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced computational mechanics, extension of the finite element method to simulating active vibration control of elastic structures
高级计算力学,将有限元方法扩展到模拟弹性结构的主动振动控制
  • 批准号:
    5676-2010
  • 财政年份:
    2011
  • 资助金额:
    $ 27万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了