Phase Retrieval Problems in Inverse Scattering
逆散射中的相位恢复问题
基本信息
- 批准号:9504611
- 负责人:
- 金额:$ 5.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-07-15 至 1997-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Sacks The investigator studies the one-dimensional inverse scattering problem of quantum mechanics, in which the solution to be found is a potential in the Schrodinger equation, and develops effective numerical methods for computing the solution. A variety of inverse scattering problems are known to be uniquely solvable when a complex valued function, known as the reflection coefficient, is given as data. In many interesting applications, however, the reflection coefficient cannot be measured, but instead only its amplitude can be determined experimentally. The phase problem in inverse scattering consists then in solving the inverse scattering problem despite the lack of phase information contained in the reflection coefficient. In general these missing data introduce genuine non-uniqueness into the problem, and one must compensate by making use of other kinds of information. For example, one might restrict the class of admissible solutions in some way consistent with the physics of the situation, or alternatively one might have available some other kinds of data related to the usual scattering data. Aside from uniqueness questions, there is also a need to develop accurate and reliable computational techniques. The model problem --- the one-dimensional inverse scattering problem --- arises in neutr on and x-ray reflection studies of surface structure. Related problems in optics are also studied. It is natural in such applications to require the potential to vanish on a half line, and this substantially, although not completely, removes the ambiguity due to the missing phase information. A main goal of this project is to identify various types of further supplementary information whose specification allows for unique recovery of the potential. Also, numerical methods are developed for computation of the potential in each case. An important aspect of the numerical approach developed here is that ultimately it is only necessary to solve an optimization problem over a relatively small dimensional parameter space. In a number of areas of science and engineering it is of interest to characterize the chemical structure of surfaces and interfaces on very small length scales. Aside from its intrinsic theoretical interest, this kind of capability has technological applications, especially in materials science and biology. One experimental technique which has received considerable attention in recent years is the use of so-called reflectivity data: a carefully prepared beam of x-rays or neutrons is aimed at the surface whose material properties are sought, and the reflected beam is carefully measured. Due to the interaction of the beam with the surface, the reflected beam encodes a great deal of information about the surface, and one is thus confronted with the problem of properly interpreting such data. The main goal of this project is to investigate certain analytical and numerical methods for making such inferences. The reflected beam may be characterized by amplitude and phase components, but conventional measuring devices are sensitive only to the amplitude component. It is well understood that considerable ambiguity in the interpretation of reflectivity data is associated with the absence of the phase component. To compensate for this one hopes to use various kinds of supplementary information which may be available. In this project the investigator seeks to elucidate from a mathematical point of view how it may be possible to incorporate such extra information into automatic data processing techniques.
麻袋 研究人员研究量子力学的一维逆散射问题,其中要找到的解决方案是薛定谔方程中的一个潜在的,并开发有效的数值方法计算的解决方案。 已知各种逆散射问题是唯一可解的复值函数时,称为反射系数,作为数据给出。 然而,在许多有趣的应用中,反射系数无法测量,而只能通过实验确定其幅度。 逆散射中的相位问题则在于解决逆散射问题,尽管反射系数中缺少相位信息。 一般来说,这些缺失的数据将真正的非唯一性引入到问题中,并且必须通过使用其他类型的信息来补偿。 例如,人们可能会以某种方式限制可接受的解决方案的类与物理的情况,或者可替代地,人们可能有一些其他类型的数据有关的通常的散射数据。 除了唯一性问题,还需要开发准确可靠的计算技术。 模型问题--一维逆散射问题--产生于中性 表面结构的X射线反射研究。 光学中的相关问题也进行了研究。 在这样的应用中,要求电势在半线上消失是自然的,并且这基本上(尽管不是完全地)消除了由于丢失相位信息而引起的模糊。 这个项目的主要目标是确定各种类型的进一步补充信息,其规格允许独特的恢复的潜力。 此外,在每种情况下的潜力的计算的数值方法。 这里开发的数值方法的一个重要方面是,最终它只需要解决一个相对较小的尺寸参数空间的优化问题。 在许多科学和工程领域,在非常小的长度尺度上表征表面和界面的化学结构是令人感兴趣的。 除了其内在的理论意义外,这种能力还具有技术应用,特别是在材料科学和生物学方面。 近年来受到相当关注的一种实验技术是使用所谓的反射率数据:将一束精心准备的X射线或中子射束对准要寻找其材料特性的表面,并仔细测量反射束。 由于相互作用, 当光束与表面接触时,反射光束编码了大量关于表面的信息,因此人们面临着正确解释这些数据的问题。 这个项目的主要目标是研究某些分析和数值方法,使这样的推论。 反射光束可以由振幅和相位分量表征,但是常规测量装置仅对振幅分量敏感。 众所周知,反射率数据解释中的相当大的模糊性与相位分量的缺失有关。 为了弥补这一点,人们希望使用各种可能获得的补充信息。 在这个项目中,研究人员试图从数学的角度阐明如何将这些额外的信息纳入自动数据处理技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul Sacks其他文献
An inverse problem to determine the shape of a human vocal tract
确定人类声道形状的反问题
- DOI:
10.1016/j.cam.2021.113477 - 发表时间:
2020-04 - 期刊:
- 影响因子:2.4
- 作者:
Tuncay Aktosun;Paul Sacks;Xiao-Chuan Xu - 通讯作者:
Xiao-Chuan Xu
Numerical Solutions for Space Fractional Schrödinger Equation Through Semiclassical Approximation
空间分数阶薛定谔方程的半经典近似数值解
- DOI:
10.1007/s42967-024-00384-z - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yijin Gao;Paul Sacks;Song Luo - 通讯作者:
Song Luo
Asymptotic behavior of the solutions to a family of PDE ' s arising from the chemotaxis equations of Keller and
由Keller和的趋化方程产生的一系列偏微分方程的解的渐近行为
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
M. Halverson;Howard A. Levine;Co;Elgin Johnston;Leslie Hogben;Paul Sacks;Sung - 通讯作者:
Sung
Paul Sacks的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Paul Sacks', 18)}}的其他基金
Singularity Formation in Nonlinear Evolution Equations Conference, Iowa State University, June 8-9, 2002, Ames, Iowa
非线性演化方程会议中的奇异性形成,爱荷华州立大学,2002 年 6 月 8-9 日,爱荷华州艾姆斯
- 批准号:
0130702 - 财政年份:2002
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Problems in Neutron Reflectometry
数学科学:中子反射测量中的反演问题
- 批准号:
9201936 - 财政年份:1992
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
Mathematical Sciences: Inverse Problems in Wave Propagation
数学科学:波传播的反问题
- 批准号:
8902122 - 财政年份:1989
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
相似海外基金
Machine learning problems as retrieval in high dimensional space
高维空间检索的机器学习问题
- 批准号:
19H04173 - 财政年份:2019
- 资助金额:
$ 5.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Difference Map for Solving Phase Retrieval Problems from a Mathematical Perspective
从数学角度解决相位检索问题的差分图
- 批准号:
410050-2011 - 财政年份:2013
- 资助金额:
$ 5.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The Difference Map for Solving Phase Retrieval Problems from a Mathematical Perspective
从数学角度解决相位检索问题的差分图
- 批准号:
410050-2011 - 财政年份:2012
- 资助金额:
$ 5.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The Difference Map for Solving Phase Retrieval Problems from a Mathematical Perspective
从数学角度解决相位检索问题的差分图
- 批准号:
410050-2011 - 财政年份:2011
- 资助金额:
$ 5.4万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Learning Assistant System Providing Materials with Knowledge Relational Maps to Help Retrieval and a Work Place for Solving Problems in Collaboration to Promote Generalized Knowledge Usability
学习辅助系统提供材料知识关系图帮助检索和协作解决问题的工作场所促进广义知识可用性
- 批准号:
21500920 - 财政年份:2009
- 资助金额:
$ 5.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Updating Problems in Information Retrieval and a Mathematical Dissection Lab
职业:更新信息检索和数学剖析实验室中的问题
- 批准号:
0546622 - 财政年份:2006
- 资助金额:
$ 5.4万 - 项目类别:
Continuing Grant
U.S.-India Cooperative Research: Geometric Query-Retrieval Problems on Aggregated Data
美印合作研究:聚合数据的几何查询检索问题
- 批准号:
0422775 - 财政年份:2004
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant
Evaluation of information retrieval: old problems and new perspectives
信息检索评价:老问题与新视角
- 批准号:
203629-2000 - 财政年份:2001
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Evaluation of information retrieval: old problems and new perspectives
信息检索评价:老问题与新视角
- 批准号:
203629-2000 - 财政年份:2000
- 资助金额:
$ 5.4万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale Matrix Computation Problems in Information Retrieval and Datamining
信息检索和数据挖掘中的大规模矩阵计算问题
- 批准号:
9901986 - 财政年份:1999
- 资助金额:
$ 5.4万 - 项目类别:
Standard Grant














{{item.name}}会员




