A Dissection of the Yeast ER Translocation Machine
酵母内质网易位机的剖析
基本信息
- 批准号:9506002
- 负责人:
- 金额:$ 41.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1995
- 资助国家:美国
- 起止时间:1995-08-15 至 1999-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9506002 Brodsky The molecular mechanism of protein translocation into the yeast ER will be detailed, affording a deeper understanding of how polypeptides may cross biological membranes. Although several factors required for protein translocation have been identified through genetic analyses, how these components act coordinately to thread a precursor protein across the ER membrane remains obscure. Each member of the translocation complex will be purified using standard techniques and analyzed with a novel biochemical complementation test. The mechanism(s) whereby ATP drives protein translocation, perhaps by altering the conformation and activity of a subcomplex of the translocation apparatus will be investigated. The purification of active members of the translocation complex will rely on an assay in which wild type protein fractions are tested for their ability to restore protein import to reconstituted proteoliposomes prepared from cells with non-functional mutations in the corresponding genes. An active subcomplex of the translocation complex was successfully purified using this test of biochemical complementation. Once other active components in the complex are isolated, their interactions with one another, their associations with a precursor protein and ribosomes, and their ability to regulate the translocation channel will be investigated. A liposome reconstituted with essential purified factors in the complex should support protein import and determine which members of the translocation machine are stimulatory or regulatory. To examine how constituents of the translocation complex interact, affinity columns containing the required translocation factors are prepared. Purified proteins or crude solubilized membrane extracts are applied to the matrices to identify interacting subcomplexes or novel members of the translocation complex. To determine which factors in the translocation apparatus contact ribosomes and precursor proteins, purified factors will be r econstituted into liposomes and mixed with radiolabeled ribosomes or secreted proteins to assess their interaction. A likely candidate for these contacts is the translocation channel, Sec61p, which is presently 50% pure and biochemically complements the sec61 mutant in the reconstituted assay described above. The interaction of Sec61p with other factors in the translocation complex and measurements of the uptake of radiolabeled peptides into liposomes containing either Sec61p alone or combined with other purified proteins offer insights into how the translocation pore is regulated. These studies will dissect an intricate protein machine at the ER membrane that performs the first step in the secretory pathway. The results from this study will permit an understanding of how the transport of a protein across a membrane, an energetically unfavorable process, is facilitated by the translocation complex: a membrane protein machine of this complexity has not been fully examined and reconstituted to date. The work proposed here will further the comprehension of energy-requiring transport systems, of gated channels, of heat shock protein function, and of the secretory pathway. Finally, because these studies utilize a genetically defined system and biochemical methods, novel techniques for examining membrane transport and other cell biological phenomena will become evident. %%% The cell uses protein complexes to spacially organize temporal events. These protein machines are found throughout the cell and help to organize, for example, metabolic sequences, global cellular structure and polarity, and traffic of newly synthesized proteins to their correct locations. The protein machine of interest here is an example of the latter; it is one which recognizes newly synthesized proteins destined for delivery outside the cell (secretion) and, like a grocery clerk, bags them up. Interestingly, it only takes those items which should be secreted, so it must recognize those items and open up the bag for them only -- not other proteins. The movement (translocation) of proteins into the bag, or endoplasmic reticulum (ER), is regulated by this energy-consuming protein machine. This work is to dissect the machine, purify the components, and reconstitute its activity using a "synthetic" bag, a liposome. This type or reconstitution has not been done before. The components of the machine have been identified using the power of yeast genetics; if one of the components is made nonfunctional by mutation, the machine stops. The sensitivity of the machine to these mutations can be studied both in the cell (using ER) and in the test tube (using liposomes). The interaction of these components, their energy dependence, and their self-assembly in the test tube are analyzed. The results have application to how other protein machines fit together and how the cell regulates what gets out of and what stays inside the cell. ***
小行星9506002 蛋白质易位到酵母内质网的分子机制将被详细说明,提供了一个更深入的了解多肽如何可能跨越生物膜。虽然已经通过遗传分析确定了蛋白质易位所需的几个因素,但这些组分如何协调作用以使前体蛋白穿过ER膜仍然不清楚。易位复合物的每个成员将使用标准技术进行纯化,并使用新的生化互补测试进行分析。ATP驱动蛋白质易位的机制,可能是通过改变易位器的亚复合物的构象和活性来研究的。易位复合物的活性成员的纯化将依赖于一种测定,其中测试野生型蛋白质级分将蛋白质输入恢复到重构的蛋白脂质体的能力,所述重构的蛋白脂质体由在相应基因中具有非功能性突变的细胞制备。使用该生化互补试验成功纯化了易位复合物的活性亚复合物。一旦在复杂的其他活性成分被分离出来,它们之间的相互作用,它们与前体蛋白和核糖体的关联,以及它们调节易位通道的能力将被研究。在复合物中用必需的纯化因子重构的脂质体应支持蛋白质输入并确定易位机器的哪些成员是刺激性的或调节性的。为了检查易位复合物的组分如何相互作用,制备含有所需易位因子的亲和柱。将纯化的蛋白质或粗溶解的膜提取物应用于基质以鉴定相互作用的亚复合物或易位复合物的新成员。为了确定易位装置中的哪些因子接触核糖体和前体蛋白,将纯化的因子重新构建到脂质体中,并与放射性标记的核糖体或分泌蛋白混合以评估它们的相互作用。这些接触的一个可能的候选者是易位通道Sec 61 p,其目前是50%纯的,并且在上述重构测定中与sec 61突变体在生物化学上互补。Sec 61 p与易位复合物中其他因子的相互作用以及放射性标记肽摄取到单独含有Sec 61 p或与其他纯化蛋白质组合的脂质体中的测量提供了对易位孔如何调节的见解。这些研究将剖析ER膜上一个复杂的蛋白机器,它执行分泌途径的第一步。这项研究的结果将允许了解如何转运蛋白跨膜,一个积极的不利的过程,是由易位复合物促进:膜蛋白机器的这种复杂性尚未得到充分的检查和重建的日期。这里提出的工作将进一步理解需要能量的运输系统,门控通道,热休克蛋白的功能,和分泌途径。最后,由于这些研究利用了遗传学定义的系统和生物化学方法,用于检查膜转运和其他细胞生物学现象的新技术将变得明显。 细胞利用蛋白质复合物在空间上组织时间事件。 这些蛋白质机器遍布整个细胞,并有助于组织,例如,代谢序列,整体细胞结构和极性,以及新合成的蛋白质到其正确位置的运输。 我们感兴趣的蛋白质机器是后者的一个例子;它识别新合成的蛋白质,并像杂货店店员一样将它们运送到细胞外(分泌)。 有趣的是,它只接受那些应该分泌的东西,所以它必须识别这些东西,并只为它们打开袋子-而不是其他蛋白质。 蛋白质进入袋或内质网(ER)的运动(易位)由这种消耗能量的蛋白质机器调节。 这项工作是解剖机器,纯化成分,并使用“合成”袋,脂质体重建其活性。这种类型或重组以前没有做过。 这台机器的组成部分已经通过酵母遗传学的力量得到了鉴定;如果其中一个组成部分因突变而失去功能,这台机器就会停止运转。 机器对这些突变的敏感性可以在细胞(使用ER)和试管(使用脂质体)中进行研究。 这些组件的相互作用,它们的能量依赖性,以及它们在试管中的自组装进行了分析。 这些结果可以应用于其他蛋白质机器如何组合在一起,以及细胞如何调节什么离开细胞,什么留在细胞内。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Brodsky其他文献
Quiescence as a therapeutic target in ovarian cancer (1245)
休眠作为卵巢癌的治疗靶点(1245)
- DOI:
10.1016/j.ygyno.2023.06.154 - 发表时间:
2023-09-01 - 期刊:
- 影响因子:4.100
- 作者:
Michelle Ertel;Tonge Brunhilda;Santiago Panesso;Sara Sannino;April Sagan;Stacy McGonigal;Qi Jiang;Jeffrey Brodsky;Hatice Osmanbeyoglu;Ronald Buckanovich - 通讯作者:
Ronald Buckanovich
Jeffrey Brodsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Brodsky', 18)}}的其他基金
CAREER: Computational Approaches to Understanding Membrane Protein Energetics and Function
职业:理解膜蛋白能量学和功能的计算方法
- 批准号:
0845286 - 财政年份:2009
- 资助金额:
$ 41.64万 - 项目类别:
Standard Grant
Collaborative Research: Protein Quality Control in the Endoplasmic Reticulum
合作研究:内质网蛋白质质量控制
- 批准号:
0110331 - 财政年份:2001
- 资助金额:
$ 41.64万 - 项目类别:
Continuing Grant
A Dissection of the Yeast ER Translocation Machine
酵母内质网易位机的剖析
- 批准号:
9904575 - 财政年份:1999
- 资助金额:
$ 41.64万 - 项目类别:
Continuing Grant
相似海外基金
Regulation of Hog1 MAPK by Snf1 AMPK in yeast ER stress response
Snf1 AMPK 在酵母内质网应激反应中对 Hog1 MAPK 的调节
- 批准号:
16K07336 - 财政年份:2016
- 资助金额:
$ 41.64万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The novel mechanism of avoidance of ER stress in yeast
酵母避免内质网应激的新机制
- 批准号:
25892018 - 财政年份:2013
- 资助金额:
$ 41.64万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Functional Characterization of an ER-Resident Ubiquitin Ligase in Yeast
酵母内质网驻留泛素连接酶的功能表征
- 批准号:
8000310 - 财政年份:2010
- 资助金额:
$ 41.64万 - 项目类别:
Functional Characterization of an ER-Resident Ubiquitin Ligase in Yeast
酵母内质网驻留泛素连接酶的功能表征
- 批准号:
8145292 - 财政年份:2010
- 资助金额:
$ 41.64万 - 项目类别:
ER Associated Degradation of Membrane Proteins in Yeast
酵母中内质网相关的膜蛋白降解
- 批准号:
7088330 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Endoplasmic Reticulum (ER) Associated Degradation of Membrane Proteins in Yeast
酵母中内质网 (ER) 相关的膜蛋白降解
- 批准号:
8500350 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Endoplasmic Reticulum (ER) Associated Degradation of Membrane Proteins in Yeast
酵母中内质网 (ER) 相关的膜蛋白降解
- 批准号:
7983367 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Endoplasmic Reticulum (ER) Associated Degradation of Membrane Proteins in Yeast
酵母中内质网 (ER) 相关的膜蛋白降解
- 批准号:
8127655 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Endoplasmic Reticulum (ER) Associated Degradation of Membrane Proteins in Yeast
酵母中内质网 (ER) 相关的膜蛋白降解
- 批准号:
7635717 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Cold Adaptation in Yeast: The Role of ER-Associated Degradation and Sterol Metabolism
酵母的冷适应:内质网相关降解和甾醇代谢的作用
- 批准号:
0543781 - 财政年份:2006
- 资助金额:
$ 41.64万 - 项目类别:
Standard Grant