Weighted Myriad Filters and Their Applications in Communications

加权无数滤波器及其在通信中的应用

基本信息

  • 批准号:
    9530923
  • 负责人:
  • 金额:
    $ 30.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-07-15 至 2000-06-30
  • 项目状态:
    已结题

项目摘要

Linear Filtering theory has been largely motivated by the characteristics of Gaussian random processes. In the same manner, research in myriad filtering theory is motivated by the statistical properties of alpha-stable processes which describe an important class of processes, impulsive in nature, that obey a Generalized Central Limit Theorem; thus these processes can arise in practice as a result of physical principles. The foundation of myriad filtering algorithms lies in the definition of the sample myriad as the location estimate of a class of alpha-stable distributions. The main goals of this research are: (1) To study the theoretical properties of the sample myriad and to exploit its geometrical structure for the development of efficient computational algorithms. (2) To solve the optimal "weighted myriad" filtering problem - the problem analogous to the design of the optimal FIR (Wiener) filter and the optimal weighted median filter. (3) To develop adaptive filtering algorithms for the simple design of weighted myriad filters for applications where the statistical characteristics of the underlying signals may be unknown or varying. (4) To extend the filter formulation to the case where the signals are complex or multivariate, providing us with the tools needed to develop robust CDMA multiple access detectors. This work can have a significant impact on applications requiring robust estimation and filtering. This is particularly the case in mobile and personal communication systems, to be deployed in the near future, where the underlying statistics of the noise and interferences closely follow the models used in this research rather that the traditional models used in practice today. The results of this research can also be applied to a wide range of problems including remote sensing imaging of the environment and non-destructive evaluation of materials.
高斯随机过程的特性极大地激发了线性滤波理论的发展。 同样,无数过滤理论的研究也是由α稳定过程的统计特性所激发的,α稳定过程描述了一类重要的过程,本质上是脉冲的,服从广义中心极限定理;因此这些过程在实践中可以作为物理原理的结果出现。 Myriad滤波算法的基础在于将样本Myriad定义为一类α稳定分布的位置估计。 本研究的主要目的是:(1)研究样本数的理论性质,并利用其几何结构来发展有效的计算算法。 (2)为了解决最优“加权无数”滤波问题--这个问题类似于最优FIR(维纳)滤波器和最优加权中值滤波器的设计。 (3)开发自适应滤波算法,用于基础信号的统计特性可能未知或变化的应用中的加权无数滤波器的简单设计。 (4)将滤波器公式扩展到信号复杂或多变量的情况,为我们提供了开发鲁棒CDMA多址检测器所需的工具。 这项工作可以对需要鲁棒估计和滤波的应用产生重大影响。 在不久的将来部署的移动的和个人通信系统中尤其是这种情况,其中噪声和干扰的基本统计密切遵循本研究中使用的模型,而不是今天实践中使用的传统模型。 这项研究的结果也可以应用于广泛的问题,包括遥感成像的环境和非破坏性评估的材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gonzalo Arce其他文献

Gonzalo Arce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gonzalo Arce', 18)}}的其他基金

EAGER: IMPRESS-U: Exploratory Research on Generative Compression for Compressive Lidar
EAGER:IMPRESS-U:压缩激光雷达生成压缩的探索性研究
  • 批准号:
    2404740
  • 财政年份:
    2024
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Hypergraph Signal Processing and Networks via t-Product Decompositions
合作研究:CIF:小型:通过 t 产品分解的超图信号处理和网络
  • 批准号:
    2230161
  • 财政年份:
    2023
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
CIF: Small: Collaborative Research: Blue-Noise Graph Sampling
CIF:小型:协作研究:蓝噪声图采样
  • 批准号:
    1815992
  • 财政年份:
    2018
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
CIF:Small:Coded Aperture Spectral X-Ray Tomography
CIF:小:编码孔径光谱 X 射线断层扫描
  • 批准号:
    1717578
  • 财政年份:
    2017
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
VEC: Small: Collaborative Research: Joint Compressive Spectral Imaging and 3D Ranging Sensing Using a Commodity Time-Of-Flight Range Sensor
VEC:小型:协作研究:使用商品飞行时间距离传感器进行联合压缩光谱成像和 3D 测距传感
  • 批准号:
    1538950
  • 财政年份:
    2015
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Continuing Grant
ITR: Optimal Diffusion Mechanisms for Fast and Robust TCP Congestion Control
ITR:快速、鲁棒 TCP 拥塞控制的最佳扩散机制
  • 批准号:
    0312851
  • 财政年份:
    2003
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
CISE Research Instrumentation
CISE 研究仪器
  • 批准号:
    9320317
  • 财政年份:
    1994
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Micro Statistics in Signal Decomposition and the Optimal Filtering Problem
信号分解的微观统计与最优滤波问题
  • 批准号:
    9020667
  • 财政年份:
    1991
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Research Initiation: Analysis of One and Two Dimensional Recursive Median Filters
研究启动:一维和二维递归中值滤波器的分析
  • 批准号:
    8307764
  • 财政年份:
    1983
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant

相似海外基金

Chemically Diverse Stimuli-Responsive Polymers for Myriad Applications
适用于多种应用的化学多样性刺激响应聚合物
  • 批准号:
    RGPIN-2020-04671
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
System Level Design and Feasibility of the Myriad Multi-rotor Wind Turbine Concept
无数多旋翼风力发电机概念的系统级设计和可行性
  • 批准号:
    10044410
  • 财政年份:
    2022
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Grant for R&D
Chemically Diverse Stimuli-Responsive Polymers for Myriad Applications
适用于多种应用的化学多样性刺激响应聚合物
  • 批准号:
    RGPIN-2020-04671
  • 财政年份:
    2021
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
Chemically Diverse Stimuli-Responsive Polymers for Myriad Applications
适用于多种应用的化学多样性刺激响应聚合物
  • 批准号:
    RGPIN-2020-04671
  • 财政年份:
    2020
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Grants Program - Individual
The Ontology of the Flesh, and the Myriad Styles of Being Human
肉体的本体论和人类的多种风格
  • 批准号:
    2239337
  • 财政年份:
    2019
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Studentship
EAGER: Myriad: a new architecture for parallel multiscale simulation on CPU/GPU
EAGER: Myriad:CPU/GPU 上并行多尺度模拟的新架构
  • 批准号:
    1743214
  • 财政年份:
    2018
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Standard Grant
Versatile membrane separation technology for organics dehydration in biofuels production and myriad chemical industry applications
用于生物燃料生产和多种化学工业应用中有机物脱水的多功能膜分离技术
  • 批准号:
    468693-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Collaborative Research and Development Grants
Versatile membrane separation technology for organics dehydration in biofuels production and myriad chemical industry applications
用于生物燃料生产和多种化学工业应用中有机物脱水的多功能膜分离技术
  • 批准号:
    468693-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Collaborative Research and Development Grants
A blueprint for an intelligent instrumental, theoretical and experimental unification of a myriad of voltammetric and related electrochemical techniques.
无数伏安法和相关电化学技术的智能仪器、理论和实验统一的蓝图。
  • 批准号:
    DP0344234
  • 财政年份:
    2003
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Projects
A blueprint for an intelligent instrumental, theoretical and experimental unification of a myriad of voltammetric and related electrochemical techniques.
无数伏安法和相关电化学技术的智能仪器、理论和实验统一的蓝图。
  • 批准号:
    ARC : DP0344234
  • 财政年份:
    2003
  • 资助金额:
    $ 30.5万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了