Structured Federated Learning for Personalised Intelligence on Devices
用于设备上个性化智能的结构化联合学习
基本信息
- 批准号:DE230100495
- 负责人:
- 金额:$ 29.75万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2023
- 资助国家:澳大利亚
- 起止时间:2023-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The project aims to develop a new structured federated machine-learning framework to enhance the customisation of artificial intelligence across mobile and smart devices. It seeks to enable users to receive customised services on their devices without sending their sensitive personal data to a cloud service provider. Anticipated benefits include greater privacy, data security and device performance, as well as better end-user experience. Expected outcomes of this research include new knowledge, toolkits and algorithms for use in developing machine-learning based secure, efficient and fault-tolerant technologies for software applications, mobile services, cloud computing, autonomous vehicles and advanced manufacturing processes.
该项目旨在开发一种新的结构化联邦机器学习框架,以增强跨移动和智能设备的人工智能定制。该公司试图让用户在不向云服务提供商发送敏感个人数据的情况下,在自己的设备上接收定制服务。预期的好处包括更好的隐私、数据安全和设备性能,以及更好的终端用户体验。这项研究的预期成果包括新知识、工具包和算法,用于开发基于机器学习的安全、高效和容错技术,用于软件应用、移动服务、云计算、自动驾驶汽车和先进制造工艺。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
A/Prof Jing Jiang其他文献
A/Prof Jing Jiang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
CICI: TCR: Transitioning Differentially Private Federated Learning to Enable Collaborative, Intelligent, Fair Skin Disease Diagnostics on Medical Imaging Cyberinfrastructure
CICI:TCR:转变差异化私有联合学习,以实现医学影像网络基础设施上的协作、智能、公平的皮肤病诊断
- 批准号:
2319742 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
Efficient Federated Learning for Deep Learning Through Structured Training
通过结构化训练实现深度学习的高效联邦学习
- 批准号:
24K20845 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
- 批准号:
24K20848 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: CSR: Adaptive Federated Continuous Learning on Heterogeneous Edge Devices with Unlabeled Data
CRII:CSR:具有未标记数据的异构边缘设备的自适应联合连续学习
- 批准号:
2348279 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
CPS: Medium: Federated Learning for Predicting Electricity Consumption with Mixed Global/Local Models
CPS:中:使用混合全局/本地模型预测电力消耗的联合学习
- 批准号:
2317079 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
Federated Reinforcement Learning Empowered Point Cloud Video Streaming
联合强化学习赋能点云视频流
- 批准号:
24K14927 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Standard Grant
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Continuing Grant
Quantum Federated Learning-driven Secure Industry Cloud Collaboration Framework
量子联邦学习驱动的安全行业云协作框架
- 批准号:
24K20781 - 财政年份:2024
- 资助金额:
$ 29.75万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




