Primer Synthesis Kinetics by E. coli Primase

大肠杆菌引物合成动力学

基本信息

  • 批准号:
    9600544
  • 负责人:
  • 金额:
    $ 24.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1996
  • 资助国家:
    美国
  • 起止时间:
    1996-08-01 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

9600544 Griep This is a study of the nucleotide insertion and incorporation kinetics of primase. When errors are incorporated into the DNA during replication, a process during which primase plays a key role, the result is genetic mutation and possibly cancer. Recent studies indicate that primase is the most error-prone enzyme of DNA replication and may very well be the enzyme which misincorporates the most errors into the chromosome. Primase is the single-stranded DNA-dependent RNA polymerase that synthesizes a short (11+1 nucleotide) RNA polymer that serves to initiate DNA synthesis. Primase is required because DNA polymerases are great at elongating DNA but cannot initiate polymers. The primase from E. coli will be studied because it has an especially high specificity during initiation, it prefers to initiate complementary to d(CTG) in the template. This specificity allows one to monitor the length- and sequence-dependence of the primers that are made. Other than this feature though, eukaryotic and bacterial primases exhibit very similar kinetic, structural and binding properties. Primases, like all RNA polymerases, carry out polymer synthesis in three distinct stages, polymer initiation, elongation and termination. Among the nucleic acid polymerases, primases (from bacterial to human) exhibit the highest nucleotide bypass efficiency and the greatest ability to incorporate NTP sugar analogs such as dNTP. Nucleotide bypass is when a polymerase inserts an incorrect nucleotide opposite the template strand and then incorporates that misinsertion by adding the next correct nucleotide. If this were to happen in vivo with anywhere near the efficiency that it occurs in vivo, it might lead to mutation of the genetic material. Current evidence from the proposer's lab suggests that the efficiency of nucleotide bypass changes during the different stages of polymer synthesis. Primase has very high template sequence specificity during initiation but not during elongation or termination. For instance , primase is unlikely to initiate synthesis with a dNTP but will insert a dNMP just as efficiently as a NMP during termination. One possible role for this ability during elongation may be to create a RNA polymer with a 3'-terminal dNMP which may be recognized more effectively by the DNA polymerase. On the other hand, if dNMPs are incorporated more efficiently into the middle of the "RNA primer", then the primer may serve as a better (or worse) target of RNase H or the 5'-3' exonuclease of DNA polymerase I. This study will determine the stage at which primase most efficiently incorporates the correct versus the incorrect dNMPs. The information gained will be used to hypothesize a role for these (mis)incorporated deoxyribonucleotides. %%% The two DNA strands are replicated separately and coordinately. Helicase and DNA polymerase are required for continuous synthesis of the "leading strand" while the "lagging strand" additionally requires primase so that it may be synthesized as numerous short fragments. Each of these fragments begin with an 11+1 nucleotide RNA synthesized by primase that is later excised by other enzymes. Using only primase, its nucleotide substrates, and a DNA template, we have developed a simple assay system to measure template sequence-specific primer synthesis. It was possible to develop this assay system because initiation takes place at a known sequence, d(CTG), and the length of the synthesized primer is 12 nucleotides and greater. In the test tube, pure primase is the most error-prone DNA replication enzyme. We would like to determine when during primer synthesis the most errors occur so that we can hypothesize whether the errors stimulate the excision enzymes and what might be their biological relevance. We will measure the rate of primase errors and determine the effect of distance from the initiation site, of one or several missing sites on the template, of different initiation sequences, and of DNAB helicase on all of these. ***
9600544 格里普 本文研究了引物酶的核苷酸插入和掺入动力学。 当错误在复制过程中被纳入DNA时,在此过程中引发酶起着关键作用,结果是基因突变和可能的癌症。最近的研究表明,引物酶是DNA复制中最容易出错的酶,并且很可能是将大多数错误错误掺入染色体的酶。引物酶是单链DNA依赖性RNA聚合酶,其合成用于启动DNA合成的短(11 + 1个核苷酸)RNA聚合物。引物酶是必需的,因为DNA聚合酶在延长DNA方面很好,但不能引发聚合物。从E.大肠杆菌将被研究,因为它在起始过程中具有特别高的特异性,它更喜欢起始模板中与d(CTG)互补的序列。这种特异性允许人们监测所制备的引物的长度和序列依赖性。然而,除了这个特征之外,真核生物和细菌引发酶表现出非常相似的动力学、结构和结合特性。引物酶,像所有的RNA聚合酶一样,在三个不同的阶段进行聚合物合成,聚合物起始,延伸和终止。在核酸聚合酶中,引物酶(从细菌到人)表现出最高的核苷酸旁路效率和最大的掺入NTP糖类似物如dNTP的能力。核苷酸旁路是当聚合酶在模板链的对面插入不正确的核苷酸,然后通过添加下一个正确的核苷酸来掺入该错误插入。 如果这在体内发生,其效率接近体内发生的效率,则可能导致遗传物质的突变。 目前来自提议者实验室的证据表明,核苷酸旁路的效率在聚合物合成的不同阶段发生变化。引物酶在起始期间具有非常高的模板序列特异性,但在延伸或终止期间不具有。 例如,引发酶不太可能用dNTP启动合成,但在终止过程中会像NMP一样有效地插入dNMP。 这种能力在延伸过程中的一个可能的作用可能是产生具有3'-末端dNMP的RNA聚合物,其可以被DNA聚合酶更有效地识别。 另一方面,如果dNMP更有效地掺入"RNA引物"的中间,则引物可以用作RNA酶H或DNA聚合酶I的5 '-3'外切核酸酶的更好(或更差)的靶标。本研究将确定引发酶最有效地结合正确与不正确的dNMP的阶段。 所获得的信息将用于假设这些(错误)掺入的脱氧核糖核苷酸的作用。 %%% 这两条DNA链分别复制并协调。解旋酶和DNA聚合酶是连续合成"前导链"所必需的,而"滞后链"另外需要引发酶,使得它可以合成为许多短片段。这些片段中的每一个开始都是由引发酶合成的11 + 1个核苷酸的RNA,随后被其他酶切除。仅使用引物酶,其核苷酸底物,和DNA模板,我们已经开发了一个简单的测定系统来测量模板序列特异性引物合成。 由于起始发生在已知序列d(CTG)处,并且合成引物的长度为12个核苷酸或更长,因此有可能开发该测定系统。 在试管中,纯引发酶是最容易出错的DNA复制酶。我们想确定在引物合成过程中什么时候发生最多的错误,以便我们可以假设错误是否刺激切除酶以及它们的生物学相关性。 我们将测量引发酶错误率,并确定与起始位点的距离、模板上一个或几个缺失位点、不同起始序列以及DNAB解旋酶对所有这些的影响。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mark Griep其他文献

Mark Griep的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mark Griep', 18)}}的其他基金

REU Site: Research Experiences for Undergraduates in Chemical Assembly at the University of Nebraska
REU 网站:内布拉斯加大学化学组装本科生的研究经验
  • 批准号:
    2147939
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Chemical Assembly at the University of Nebraska
REU 网站:内布拉斯加大学化学组装本科生的研究经验
  • 批准号:
    1757957
  • 财政年份:
    2018
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
REU Site: Research Experiences for Undergraduates in Chemical Assembly at the University of Nebraska
REU 网站:内布拉斯加大学化学组装本科生的研究经验
  • 批准号:
    1460829
  • 财政年份:
    2015
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Framing the Chemistry Curriculum
制定化学课程
  • 批准号:
    1348382
  • 财政年份:
    2013
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
EAPSI: Muscle MEMS Devices for a Cardiac Hypertrophy Model
EAPSI:用于心脏肥大模型的肌肉 MEMS 器件
  • 批准号:
    0813223
  • 财政年份:
    2008
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Fellowship Award

相似国自然基金

新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
  • 批准号:
    61671111
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Structure and kinetics of iron-catalysts in the initial phase of the Fischer-Tropsch synthesis: Combination of Operando-XRD and studies in a fixed-bed reactor
费托合成初始阶段铁催化剂的结构和动力学:操作 XRD 与固定床反应器研究的结合
  • 批准号:
    412867760
  • 财政年份:
    2018
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Research Grants
SusChEM:CAREER:Using unique synthesis techniques and reaction kinetics to quantify and manipulate catalytically active sites in metal-reducible oxide systems
SusChEM:职业:使用独特的合成技术和反应动力学来量化和操纵金属可还原氧化物系统中的催化活性位点
  • 批准号:
    1653935
  • 财政年份:
    2017
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
Time-scale analysis for the synthesis of thin-film deposition reaction kinetics models
薄膜沉积反应动力学模型合成的时间尺度分析
  • 批准号:
    1438375
  • 财政年份:
    2014
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Standard Grant
KINETICS OF AXONAL PROTEIN SYNTHESIS AND RNA TRANSPORT
轴突蛋白合成和 RNA 运输的动力学
  • 批准号:
    8363796
  • 财政年份:
    2011
  • 资助金额:
    $ 24.75万
  • 项目类别:
300 MHz NMR console for research in molecular synthesis, heteronuclear experiments, and kinetics experiments
300 MHz NMR 控制台,用于分子合成、异核实验和动力学实验研究
  • 批准号:
    406532-2011
  • 财政年份:
    2010
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Research Tools and Instruments - Category 1 (<$150,000)
KINETICS OF AXONAL PROTEIN SYNTHESIS AND RNA TRANSPORT
轴突蛋白合成和 RNA 运输的动力学
  • 批准号:
    8169792
  • 财政年份:
    2010
  • 资助金额:
    $ 24.75万
  • 项目类别:
Phase relations and kinetics of phase formation of non-equilibrium-solids of pnicogens and chalcogens - Mechanisms of structure formation, synthesis and characterization of element allotropes and compounds -
磷族和硫族非平衡固体的相关系和相形成动力学 - 元素同素异形体和化合物的结构形成、合成和表征的机制 -
  • 批准号:
    140698662
  • 财政年份:
    2009
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Priority Programmes
the synthesis of preteolipid protein substructure G-C dipeptide and enzyme kinetics
前脂质蛋白亚结构G-C二肽的合成及酶动力学
  • 批准号:
    384731-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 24.75万
  • 项目类别:
    University Undergraduate Student Research Awards
KINETICS OF AXONAL PROTEIN SYNTHESIS AND RNA TRANSPORT
轴突蛋白合成和 RNA 运输的动力学
  • 批准号:
    7957432
  • 财政年份:
    2009
  • 资助金额:
    $ 24.75万
  • 项目类别:
Simulating Large-Scale Conformational Rearrangements and Reaction Kinetics Profiles in DNA Polymerase Beta to Interpret DNA Synthesis Fidelity Mechanisms
模拟 DNA 聚合酶 Beta 中的大规模构象重排和反应动力学曲线,以解释 DNA 合成保真度机制
  • 批准号:
    0316771
  • 财政年份:
    2003
  • 资助金额:
    $ 24.75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了