VPW: Visiting Professorships for Women: Theta Series and Automorphic Forms
VPW:女性客座教授职位:Theta 系列和自同构形式
基本信息
- 批准号:9627069
- 负责人:
- 金额:$ 10.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-08-15 至 1999-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent work, Dr. Lynne Walling developed an algebraic proof of Siegel's representation formula, yielding formulas more explicit than those of Siegel to describe average representation numbers of positive definite quadratic forms of even rank and odd level. She is currently working with J.L. Hafner, using the theory of automorphic forms to extend these results to indefinite quadratic forms, obtaining explicit formulas for the measures of the representations of the indefinite forms over number fields and over function fields. In work with O. Imamoglu, Dr. Walling has defined a symplectic theta function over a function field and computed the transformation formula nd will develop some theory of Siegel modular forms and Jacobi forms in the function field setting. Information will be gained regarding representations of quadratic forms by higher dimensional quadratic forms. She also intends to extend the techniques developed in work with J. Hoffstein and K.D. Merrill, explicitly computing the Fourier coefficients of cusp forms of weights 0 and 1/2 for congruence subgroups that admit only one-dimensional spaces of cusp forms. Interactive activities include developing curricula for college/university mathematics courses based on contemplation, precise reasoning and clear communication; developing a summer research institute for women mathematicians; and running a one-week conference for women in harmonic analysis and number theory.
在最近的工作中,Lynne Walling博士对Siegel的表示公式进行了代数证明,得到了比Siegel更明确的公式来描述偶数秩和奇数水平的正定二次型的平均表示数。 目前,她与J. L。Hafner利用自守形式的理论将这些结果推广到不定二次型,得到了数域和函数域上不定二次型的表示的测度的显式公式。 与O。Imamoglu,Walling博士定义了函数域上的辛theta函数,并计算了变换公式,并将在函数域设置中发展Siegel模形式和Jacobi形式的一些理论。 信息将获得关于表示二次形式的高维二次形式。 她还打算扩展与J. Hoffstein和K.D. 梅里尔,明确计算权为0和1/2的尖点形式的傅立叶系数的同余子群,只允许一维空间的尖点形式。 互动活动包括:根据沉思、精确推理和明确交流为大专/大学数学课程编制课程;为女数学家设立一个暑期研究所;为妇女举办一个为期一周的调和分析和数论会议。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lynne Walling其他文献
Lynne Walling的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lynne Walling', 18)}}的其他基金
Mathematical Sciences: Relations on Representation Numbers of Quadradic Forms
数学科学:二次形式表示数的关系
- 批准号:
9103303 - 财政年份:1991
- 资助金额:
$ 10.29万 - 项目类别:
Standard Grant
相似海外基金
REU Site: Visiting and Early Research Scholars' Experiences in Mathematics (VERSEIM-REU)
REU 网站:访问学者和早期研究学者的数学经历 (VERSEIM-REU)
- 批准号:
2349058 - 财政年份:2024
- 资助金额:
$ 10.29万 - 项目类别:
Standard Grant
A Systematic Review and Meta-analysis on the Effectiveness of Home Visiting Programs on Postpartum Depression
家访计划对产后抑郁症有效性的系统回顾和荟萃分析
- 批准号:
10629114 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Development of a companion support model for the "8050 problem" targeting visiting nurses
针对巡诊护士的“8050问题”同伴支持模式开发
- 批准号:
23K10252 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of an experience-based end-of-life learning model for visiting caregivers to support EOL care at home
为探访护理人员开发基于体验的临终学习模型,以支持家庭生命终止护理
- 批准号:
23K10300 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evidence building on the actual situation and possibility of the visiting pharmacist using medical and long-term care claims data.
基于拜访药剂师使用医疗和长期护理索赔数据的实际情况和可能性的证据。
- 批准号:
23K16299 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Construction of the NPEN system, a remote support platform that supports the assessment of visiting nurses
支持上门护士评估的远程支持平台NPEN系统的构建
- 批准号:
23K10359 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Connecting Today to Combat Social Isolation and Loneliness: A Pragmatic Cluster RCT of a Remote Visiting Program for Care Home Residents Living with Dementia
今天联系起来,对抗社会孤立和孤独:针对患有痴呆症的疗养院居民的远程探访计划的务实集群随机对照试验
- 批准号:
494391 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Operating Grants
Family Spirit Strengths: A home visiting strategy to support parents and caregivers with mental distress and substance misuse
家庭精神优势:家访策略,为患有精神困扰和药物滥用的父母和看护者提供支持
- 批准号:
10622234 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
VisitBoost: A Home Visiting Enhancement to Reduce Harm for Families Affected by Substance Misuse
VisitBoost:家访增强功能,可减少受药物滥用影响的家庭的伤害
- 批准号:
10602257 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Development and evaluation of visiting lecture model in cancer education for students -Development of the medical association model-
学生癌症教育中访问讲座模式的开发与评价 -医学协会模式的开发-
- 批准号:
23K02126 - 财政年份:2023
- 资助金额:
$ 10.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




