Global Optimization and Parallel Processing of Nonlinear Problems in Engineering Applications
工程应用中非线性问题的全局优化与并行处理
基本信息
- 批准号:9632316
- 负责人:
- 金额:$ 31.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-07-15 至 1999-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this project is to develop an efficient nonlinear optimization method - NOVEL: Nonlinear Optimization Via External Lead - and the supporting hardware/software to solve large-scale nonlinear optimization problems in operations research, digital signal processing, and neural-network learning. Such a method will allow many important application problems in these areas to be solved better as well as faster than existing methods. The method first transforms nonlinear constrained optimization problems using Lagrange multipliers into unconstrained optimization problems. This transformation allows both constrained and unconstrained problems to be solved in a unified framework. The key idea of the method is to use a user-defined trace to pull a search out of a local optimum (a local saddle point in constrained optimization and a local minimum in unconstrained optimization) without having to restart it from a new starting point. The proposed method has a good balance between global search and local search. In global search, NOVEL relies on two counteracting forces: local gradient information that drives the search to a local optimum, and a deterministic trace that leads the search out of a local optimum once it gets there. The effect of the trace on the search trajectory is expressed in terms of the distance between the current position of the trajectory and that of the trace. Good starting points identified in the global-search phase are then searched more extensively using pure local searches. The proposed research consists of four aspects: refinement of the NOVEL method, parallel processing, extension to mixed-nonlinear optimization problems, and applications of the methods developed to solve problems in operations research, digital signal processing, and neural-network learning.
本项目的目标是开发一种有效的非线性优化方法--新颖的:通过外部引导的非线性优化-以及用于解决运筹学、数字信号处理和神经网络学习中的大规模非线性优化问题的辅助硬件/软件。这种方法将允许比现有方法更好、更快地解决这些领域中的许多重要应用问题。该方法首先利用拉格朗日乘子将非线性约束优化问题转化为无约束优化问题。这种转换允许在统一的框架中解决约束和非约束问题。该方法的关键思想是使用用户定义的轨迹将搜索从局部最优(约束优化中的局部鞍点和无约束优化中的局部最小值)中拉出,而不必从新的起点重新开始。该方法在全局搜索和局部搜索之间取得了良好的平衡。在全局搜索中,NOVICE依赖于两种反作用力:将搜索推向局部最优的局部梯度信息和一旦搜索到局部最优就引导搜索走出局部最优的确定性轨迹。轨迹对搜索轨迹的影响用轨迹当前位置与轨迹当前位置之间的距离来表示。然后,使用纯局部搜索更广泛地搜索在全局搜索阶段确定的好的起点。提出的研究包括四个方面:新方法的改进,并行处理,混合非线性优化问题的推广,以及为解决运筹学、数字信号处理和神经网络学习问题而开发的方法的应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Wah其他文献
Benjamin Wah的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Wah', 18)}}的其他基金
The Design of VoIP Systems with High Perceptual Conversational Quality
具有高感知会话质量的 VoIP 系统设计
- 批准号:
0841336 - 财政年份:2008
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
ITR: Efficient Algorithms for Temporal Planning Under Nonlinear Constraints
ITR:非线性约束下时间规划的高效算法
- 批准号:
0312084 - 财政年份:2003
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
Architecture Specific Resource Management Via Intelligent Compilation and Strategy Learning
通过智能编译和策略学习进行架构特定资源管理
- 批准号:
9218715 - 财政年份:1993
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
International Conference on Application-Specific Array Processors; Venice, Italy; October 25-27, 1993
专用阵列处理器国际会议;
- 批准号:
9311908 - 财政年份:1993
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
NSF Workshop on HPCC: Vision, Natural Language and Speech Processing and Artificial Intelligence, Washington, D.C., February 21-22, 1992
NSF HPCC 研讨会:视觉、自然语言和语音处理以及人工智能,华盛顿特区,1992 年 2 月 21-22 日
- 批准号:
9212592 - 财政年份:1992
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
Design of Multiprocessing Systems for Learning Strategies
学习策略多处理系统的设计
- 批准号:
8810584 - 财政年份:1988
- 资助金额:
$ 31.82万 - 项目类别:
Continuing Grant
Research Initiation: the Logical Design of Distributed Databases and Its Impact to Query Processing and File Migration
研究发起:分布式数据库的逻辑设计及其对查询处理和文件迁移的影响
- 批准号:
8105968 - 财政年份:1981
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
供应链管理中的稳健型(Robust)策略分析和稳健型优化(Robust Optimization )方法研究
- 批准号:70601028
- 批准年份:2006
- 资助金额:7.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
Scalable Algorithms for Deterministic Global Optimization With Parallel Architectures
使用并行架构实现确定性全局优化的可扩展算法
- 批准号:
2330054 - 财政年份:2024
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
ExpandQISE: Track 1: Collaborative Optimization and Management for Iterative and Parallel Quantum Computing
ExpandQISE:轨道 1:迭代和并行量子计算的协作优化和管理
- 批准号:
2329020 - 财政年份:2023
- 资助金额:
$ 31.82万 - 项目类别:
Standard Grant
F31 Childcare Supplement: Optimization of a massively parallel genome editing approach to link regulatory elements to their target genes during mouse germ layer formation
F31 儿童保育补充剂:优化大规模并行基因组编辑方法,在小鼠胚层形成过程中将调控元件与其目标基因连接起来
- 批准号:
10715088 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2022
- 资助金额:
$ 31.82万 - 项目类别:
Discovery Grants Program - Individual
Space-time parallel algorithms for large scale simulation and optimization problems governed by partial differential equations
用于偏微分方程控制的大规模模拟和优化问题的时空并行算法
- 批准号:
RGPIN-2021-02595 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Discovery Grants Program - Individual
Optimization of a massively parallel genome editing approach to link regulatory elements to their target genes during mouse germ layer formation
优化大规模并行基因组编辑方法,在小鼠胚层形成过程中将调控元件与其靶基因连接起来
- 批准号:
10569552 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Optimization of a massively parallel genome editing approach to link regulatory elements to their target genes during mouse germ layer formation
优化大规模并行基因组编辑方法,在小鼠胚层形成过程中将调控元件与其靶基因连接起来
- 批准号:
10326361 - 财政年份:2021
- 资助金额:
$ 31.82万 - 项目类别:
Parallel-hybrid electric propulsion optimization for regional turboprop aircraft
支线涡轮螺旋桨飞机并联混合电力推进优化
- 批准号:
535999-2018 - 财政年份:2020
- 资助金额:
$ 31.82万 - 项目类别:
Collaborative Research and Development Grants
Automated Parallel Bioreactor Systems for High Throughput Optimization of Bioengineered Processes
用于生物工程过程高通量优化的自动化并行生物反应器系统
- 批准号:
RTI-2021-00463 - 财政年份:2020
- 资助金额:
$ 31.82万 - 项目类别:
Research Tools and Instruments