Connections between Space-Bounded Molecular Computation and Classical Complexity Theory
空间有限分子计算与经典复杂性理论之间的联系
基本信息
- 批准号:9700417
- 负责人:
- 金额:$ 11.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-15 至 1998-10-26
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With its exponential parallelism, molecular computing offers the hope of solving important problems that have resisted solution on conventional computers. Various molecular operations have been proposed as feasible; because it is unclear which operations will be usefully implementable, algorithms that use the simplest operations are to be preferred. In particular, communication between processes may be impossible. Parallelism and running time are resources to be exploited efficiently. It is known that molecular computers with limited operations sets, polynomial time, and exponential parallelism can solve any problem in the class NP. By further limiting the parallelism, various bounded-nondeterminism subclasses of NP are obtained. This project investigates the relationships among molecular computation classes and these NP subclasses. While many molecular algorithms for important problems use 2n parallelism, this severely limits the size of problems that those algorithms can solve. In the last two decades there has been an improvement from 2n to 2cn for various c1 in the running time of classical serial algorithms for important NP-complete problems like 3-SAT, graph coloring, and independent set. Using bounded nondeterminism as an algorithm design technique, this project will develop more efficient molecular algorithms for important NP-complete problems, such as 3-SAT, graph coloring, and independent set. ***
由于其指数并行性,分子计算为解决传统计算机无法解决的重要问题提供了希望。各种分子操作被认为是可行的;由于不清楚哪些操作将有效地实现,因此使用最简单操作的算法是首选。特别是,进程之间的通信可能是不可能的。并行性和运行时间是需要有效利用的资源。已知具有有限运算集、多项式时间和指数并行性的分子计算机可以求解NP类中的任何问题。通过进一步限制并行性,得到了NP的各种有界不确定性子类。本项目研究分子计算类与这些NP子类之间的关系。虽然许多处理重要问题的分子算法使用2n并行性,但这严重限制了这些算法可以解决的问题的规模。在过去的二十年中,经典串行算法在求解3-SAT、图着色、独立集等重要np完全问题时的运行时间从2n提高到2cn。使用有界不确定性作为算法设计技术,本项目将开发更有效的分子算法来解决重要的np完全问题,如3-SAT、图着色和独立集。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Beigel其他文献
A relationship between difference hierarchies and relativized polynomial hierarchies
- DOI:
10.1007/bf01371729 - 发表时间:
2005-04-05 - 期刊:
- 影响因子:0.400
- 作者:
Richard Beigel;Richard Chang;Mitsunori Ogiwara - 通讯作者:
Mitsunori Ogiwara
A tight lower bound for restricted pir protocols
- DOI:
10.1007/s00037-006-0208-3 - 发表时间:
2006-05-01 - 期刊:
- 影响因子:1.000
- 作者:
Richard Beigel;Lance Fortnow;William Gasarch - 通讯作者:
William Gasarch
On being incoherent without being very hard
- DOI:
10.1007/bf01276436 - 发表时间:
1992-03-01 - 期刊:
- 影响因子:1.000
- 作者:
Richard Beigel;Joan Feigenbaum - 通讯作者:
Joan Feigenbaum
Richard Beigel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Beigel', 18)}}的其他基金
CCF:AF Student Travel Support for the IEEE Conference on Computational Complexity 2012
CCF:AF 为 2012 年 IEEE 计算复杂性会议提供学生旅行支持
- 批准号:
1143914 - 财政年份:2012
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Connections between Space-Bounded Molecular Computation and Classical Complexity Theory
空间有限分子计算与经典复杂性理论之间的联系
- 批准号:
0049019 - 财政年份:2000
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Connections between Space-Bounded Molecular Computation and Classical Complexity Theory
空间有限分子计算与经典复杂性理论之间的联系
- 批准号:
9996021 - 财政年份:1998
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Number of Queries: A Measure of Complexity
查询数量:复杂性的衡量标准
- 批准号:
8996273 - 财政年份:1989
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
Number of Queries: A Measure of Complexity
查询数量:复杂性的衡量标准
- 批准号:
8808949 - 财政年份:1988
- 资助金额:
$ 11.4万 - 项目类别:
Standard Grant
相似海外基金
Discover the links between the solar wind, electric currents in space, and the Northern Lights
探索太阳风、太空电流和北极光之间的联系
- 批准号:
2892503 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Studentship
Integrating cellular space and time: inteplays between subcellular organisation and lifespan
整合细胞空间和时间:亚细胞组织和寿命之间的相互作用
- 批准号:
BB/V006916/2 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Research Grant
The perivascular space: A structural link between inadequate sleep, glymphatic dysfunction, and neurocognitive outcomes in adolescents
血管周围空间:青少年睡眠不足、类淋巴功能障碍和神经认知结果之间的结构联系
- 批准号:
10578466 - 财政年份:2023
- 资助金额:
$ 11.4万 - 项目类别:
Elucidation of relationship between three-dimensional transition of neglected space and area of brain damage in hemi-spatial neglect after stroke
脑卒中后半侧空间忽视被忽视空间三维转变与脑损伤面积关系的阐明
- 批准号:
22K21219 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
The connection between space weather and terrestrial lightning storms
太空天气与地面雷暴之间的联系
- 批准号:
573084-2022 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
University Undergraduate Student Research Awards
Methodology of spatial context description for sustainable linkage between cyber and physical space
网络与物理空间可持续联系的空间情境描述方法
- 批准号:
22H01658 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Research on realizing contact and co-creation between real space and virtual space in online contents
网络内容中实现真实空间与虚拟空间的接触与共创研究
- 批准号:
22K12337 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Shared-space interactions between people and autonomous vehicles
人与自动驾驶车辆之间的共享空间交互
- 批准号:
DP220102019 - 财政年份:2022
- 资助金额:
$ 11.4万 - 项目类别:
Discovery Projects
Blending The Space Between Species: Can We Talk About The Things That Animals Make?
融合物种之间的空间:我们可以谈论动物制造的东西吗?
- 批准号:
2618409 - 财政年份:2021
- 资助金额:
$ 11.4万 - 项目类别:
Studentship
Ion-scale interactions between space plasma and satellite magnetic fields targeting orbit control
空间等离子体和卫星磁场之间的离子尺度相互作用瞄准轨道控制
- 批准号:
21H01531 - 财政年份:2021
- 资助金额:
$ 11.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)